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Abstract

People often make choices with imperfect knowledge of how the vari-

ables in their decision problem are related. We study such choices when

individuals face menus of conflicting and possibly misspecified models that

link these variables. Do they discard inaccurate models, what types of in-

accuracies do they detect, and how? Or do they instead follow models

that sound appealing at face value, and what determines that appeal? Our

experiment yields two main findings. First, many individuals readily in-

tuit the models’ predicted correlations and reject models that contradict

the data. Performance is high because the required inference is qualita-

tive rather than quantitative. Second, when unable to identify the correct

model, most choose cautiously by focusing on worst-case outcomes. This

behavior contradicts the Narrative Competition literature’s assumption of

best-case maximization, but a failure of contingent reasoning when inter-

preting models’ payoff implications can mimic that assumption. Our results

are robust to tripled stakes.
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1 Introduction

A vast literature on belief updating in economics studies how individuals use

information for choice when the structure of the data-generating process (DGP)

is known (see, e.g. Benjamin, 2019). Yet, many decision problems lack structural

information, such as which variables in the decision problem are related and in

what way. How do individuals learn and choose when they face uncertainty about

the structure of the data-generating process?

We consider a setting in which individuals face a menu of conflicting and

possibly misspecified models fitted to the DGP. These models make claims about

the relationships between variables and differ in their implications for choice and

utility. Individuals decide which model to follow. This framework captures, for

instance, political referenda in which voters choose among a small number of

proposals, each based on a different structural understanding of the world. It

likewise applies to managers choosing among a few action plans prepared by teams

with differing structural views of the competitive environment.

We study how individuals choose between such models. On the one hand,

individuals may recognize and discard models that are inconsistent with the data

(Fact-Based decision making). If so, how do they make these decisions? Do they

look for qualitative inconsistencies or do they focus on broad quantitative fit?

What model implications can they intuit and connect to the data, and what types

of inconsistencies do they fail to recognize? On the other hand, individuals may

follow models whose implications for utility and choice seem appealing at face

value (Utility-Based decision making). If so, what determines that appeal? Is

it the utility a model promises under the assumption that it is correct—which

is the assumption that drives the literature on Narrative Competition (Eliaz and

Spiegler, 2020; Eliaz et al., 2022; Levy et al., 2022)? Or do they instead favor

caution, as suggested by the literature on choice under uncertainty (see, e.g.,

Trautmann and Van De Kuilen, 2015; Gilboa, 2025)?

We study these questions in a laboratory experiment. This method provides

full control over the data-generating process and it allows us to abstract from

confounding factors such as prior beliefs or attachment to political groups.
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Our setting involves four variables: the investment amount (which the subject

chooses), the payoff amount, and two additional variables we call covariates. These

variables are causally linked through a data-generating process (DGP) that the

subject does not know. Instead, the subject observes two competing models that

we convey in natural language, using terms such as ‘X directly affects Y ,’ ‘X

influences Y indirectly through Z,’ or ‘X is a symptom of Z,’ along with graphical

illustrations. Models differ in the causal roles they assign to the four variables,

possibly erroneously. While each model treats the investment as exogenous, the

payoff and the covariates might be endogenous or exogenous. They might be causes

or symptoms of other variables, or mediators between them. We fit each model

to data produced by the DGP. Subjects observe the fitted model’s implications

for choice and utility. They have access to (simulated) empirical data from the

DGP which they may use to rule out misspecified models. After studying the

models, their implications, and the empirical data, subjects select between two

investment levels, each implied as optimal by one of the models (but possibly

suboptimal according to the DGP), and have their payoff determined according

to their choice and the DGP.

Subjects make a choice in each of several rounds. Each round features a differ-

ent DGP and a different pair of models fit to it, along with different implications

for the optimal investment levels, as well as different claims about best- and worst-

case outcomes. We formulate our hypotheses as a list of decision criteria subjects

might use. We systematically vary the available models and their implications

across the rounds to ensure that each combination of decision criteria corresponds

to a unique pattern of choices across all rounds. This revealed preference infor-

mation lets us identify subjects’ decision making. Formally, we estimate a finite

mixture model to identify the frequency of each decision criterion.

We document two main results. First, subjects display a remarkable ability

to discard misspecified models by connecting models and data. Three fifths make

purely Fact-Based choices. They not only intuit the relevant correlational implica-

tions but also find which of 18 possible charts displaying empirical data will help

them check these implications. These subjects show no tendency to detect some

types of misspecification more often than others. An additional fifth detect only

misspecifications revealed by unconditional, but not by conditional, correlational
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data. Half of the latter succeed only when the model-inconsistent correlation is

implied by a proposed direct causal effect, but not when it results from an indirect

effect or a common cause affecting two variables. The final fifth of subjects do

not make any consistent use of empirical information. A treatment that raises the

stakes by a factor of three (up to $90 in some cases) does not affect these results.

Hence, failures to detect certain inconsistencies reflect limited motivation rather

than limited ability.

Our second main result is that subjects unable or unwilling to rule out mis-

specified models choose cautiously. In our main treatment, roughly one fifth of

subjects ever deploy Utility-Based criteria. Caution describes the vast majority

of these choices, whereas best-case maximizing choices—the assumption of the

Narrative Competition literature—are extremely rare. An additional treatment

restricts access to model structures and empirical data to reveal the Utility-Based

criteria of the remaining four fifths of subjects. In this treatment, two thirds

choose cautiously, while the remaining third maximizes best-case outcomes. This

result arises when we communicate a model’s implications as its prediction about

the maximally achievable utility, along with its prediction about the utility ex-

pected if the competitor’s recommendation is followed. While this presentation is

natural for models fit to data, it differs from the presentation of payoff information

in typical risky-choice experiments (which is unnatural in our setting). In treat-

ments that present payoff implications in the latter way, the fraction of best-case

maximizing subjects drops to a tenth. A treatment involving dominated choices

shows that the natural way of presenting implications of models fit to data induces

errors, likely due to a failure of contingent thinking (Niederle and Vespa, 2023),

and hence does not reflect actual preferences.

Our subjects’ ability to rule out incorrect models may seem surprising given

the literature on belief updating (Benjamin, 2019), especially since we provide

no assistance. Our data suggests that their performance is due to the possibility

to rely on qualitative rather than quantitative inference. In principle, subjects

could assess a model’s correctness through quantitative reasoning, as each round

provides data on the relation between investment and outcome according to the

DGP, from which they could infer the optimal investment. Yet few subjects view

that data, and virtually none view it exclusively. Instead, they intuit the mod-
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els’ correlational implications and check the empirical correlations on which the

implications differ. They rarely view empirical correlations on which the models’

qualitative implications coincide. Rounds in which both models are misspecified

provide further evidence for our hypothesis of qualitative rather than quantita-

tive inference: subjects tend to pick the model with fewer inconsistencies between

model-implied and empirical correlations rather than the one whose implied in-

vestment is closer to the empirically optimal level (which they could eyeball from

the empirical data).

Out-of-sample predictions demonstrate that our estimates capture stable be-

havioral tendencies. They also reveal that a three-type model largely suffices to

explain the bulk of predictable variation in the data. That model includes (i)

a type that rules out all misspecified models, (ii) a type that excludes misspeci-

fied models only if a proposed direct causal effect appears absent in the empirical

data (and otherwise randomizes), and (iii) a type that does not seek to or fails to

discard misspecified models but makes choices to maximize worst-case payoffs.

Concerns that we may have enlisted unrepresentatively sophisticated subjects

are unwarranted. While we observe the expected relationships between subjects’

choices, their educational background, and their Cognitive Reflection Test scores

(Frederick, 2005; Thomson and Oppenheimer, 2016), our subjects’ statistical back-

ground is limited. Moreover, their CRT performance mirrors that of other univer-

sity subject pools and of financial professionals. Other subject characteristics cor-

relate only weakly or not at all with choices in our setting. Belief in pseudoscience

(Torres et al., 2020) is directionally but statistically insigificantly associated with

worse decision making, and neither political position nor political centrism have

significant predictive power. This result contrasts with the common view that dis-

agreements with one’s own political views stem from others’ objective inferential

errors, but that view itself may be mistaken (näıve realism, Griffin and Ross,

1991)

Broadly, our results provide empirical foundations for the emergent literature

on mental models whose applications span fields as diverse as behavioral economics

(Spiegler, 2016), macroeconomics (Molavi, 2019), finance (Molavi et al., 2021;

Shiller, 2017), strategic management (Felin and Zenger, 2017; Camuffo et al.,
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2023), institutional economics (Denzau and North, 1994), and contract theory

(Schumacher and Thysen, 2022). It makes three specific main contributions.1

First, it advances the literature on how individuals draw inferences from data

(reviewed in Benjamin, 2019) by studying the case in which individuals lack a-

priori information about the structure of the data-generating process. While a

large literature in cognitive science (see, e.g., Waldmann, 2017; Sloman, 2005;

Griffiths et al., 2024, for reviews) also addresses that question, that literature fo-

cuses on learning from scratch.2 It finds that humans are generally much more

adept in learning about structure than in updating proabilistic beliefs in the

types of experiments reviewed in Benjamin (2019). Our paper’s focus—choice

between competing candidate models—permits decision strategies that differ fun-

damentally from those suited to learning from scratch. In particular, it allows

for constraint-based learning (Spirtes et al., 2000), which tests whether the data

satisfy the correlational constraints implied by a given model.

Second, our results inform the literature that interprets misspecified models as

‘lens through which people view the world’ (e.g., Schwartzstein and Sunderam,

2021; Kendall and Charles, 2022; Andre et al., 2023). We show that when mod-

els are provided externally, individuals are unlikely to blindly accept any such

lens. Instead, they are adept at dismissing misspecified models when the requisite

empirical data is available and the inconsistencies between models and data are

qualitative rather than quantitative.

The third main contribution of our work is to test the main behavioral assump-

tion of the Narrative Competition literature: decision makers adopt whichever

1A previous version of this paper reports the results from an earlier experiment. (Subjects
who had participated in that experiment could not participate in the present experiment.) That
experiment also found a remarkable ability of subjects to discard misspecified models, and a
preference for cautious choice when subjects could not exclude misspecified models. It also
found around 15% of subjects making choices consistent with the Best-Case Promise criterion.
Its design has several shortcomings relative to the current experiment. First, it did not present
information about the payoffs from following a competing model, which constitutes a possible
reason for Best-Case Promise choice. Second, it did not include anything like our Utility-Focused
part. Third, it artificially simplified the problem for subjects by highlighting the data charts for
which the two models made differing predictions and by providing some explanation about the
correlational implications of causal structures.

2A narrow exception, Steyvers et al. (2003) test whether subjects can distinguish the collider
X → Y ← Z from the fork X ← Y → Z using a sequence of individual observations. In contrast
to our study, Steyvers et al. (2003) show subjects trial-by-trial data. Hence, in their work, subpar
performance may reflect an inability to extract correlational information from such data rather
than an inability to recognize inconsistencies between predicted and empirical correlations.
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model promises the highest utility if correct. That literature derives fascinating

implications of such behavior—mutually inconsistent narratives will necessarily co-

exist; it is possible to predict which narratives will survive competition and which

ones will not (Eliaz and Spiegler, 2020);3 and cycles of populism will emerge (Levy

et al., 2022).4 Our data show that a substantial minority of individuals will engage

in such Best-Case maximization due an interaction of the natural mode of commu-

nicating model implications with a failure of contingent reasoning (Niederle and

Vespa, 2023), but only as long as they cannot access data to discard misspecified

models.

Several recent studies in economics relate to our work. First, about three fifths

of the subjects in Frechette et al. (2023) can learn and reproduce the structure of

three-variable Bayesian networks from a list of observations. While their subjects’

remarkable performance parallels ours’, that work does not involve externally pro-

posed, potentially misspecified models, and hence fundamentally differs from our

tests of whether people can recognize inconsistencies between models and data.

Second, Kendall and Charles (2022) study the effect of providing chain or collider

narratives to subjects required to interpret a line-by-line dataset of three binary

variables. In a setting with stakes of a few cents,5 they find that providing sub-

jects with a single narrative affects their choices in the direction consistent with

that narrative, as do Barron and Fries (2023) in a different setting. They also

find that subjects presented with two conflicting narratives choose intermediate

actions. Despite the ostensible similarity to our work, their research questions

3For example, consider the question of whether mask-wearing causally reduces COVID-19
transmission. Focus on two causal models. Model 1 accurately describes reality and states that
increased masking reduces COVID-19 transmission. Model 2 surmises that masking has no effect
on disease transmission. If most individuals adopt the first model, they will wear masks, and case
counts will be low. According to Model 1, this situation can be maintained only by continued
masking, which has small hassle costs. Model 2 is more attractive because it predicts that ending
mask-wearing will eliminate hassle costs without affecting case counts. The literature assumes
that due to its greater attractiveness, individuals will flock to Model 2. Contrarily, if Model 2
is more popular, individuals will not wear masks, and case counts will be high. According to
Model 2, masking cannot change this situation. Model 1 makes the more attractive prediction
that case counts can be lowered at a small hassle cost. Individuals will thus flock to Model 1.
Overall, the more popular one model, the more attractive the other. Accordingly, no model,
including the correct one, can survive alone; multiplicity is an equilibrium.

4The formal assumption in Levy et al. (2022) is that the difference in the maximal utilities
promised by two parties motivates turnout.

5A subject in their main sample who makes the worst choices loses 33 cents relative to
optimal choice.
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fundamentally differ from ours. We are interested in settings such as voting on

political referenda or selecting between leaders with differing views of the interac-

tions between economic variables. In these settings, agents must choose between

models, and intermediate choices are unavailable. More importantly, our work

generally characterizes the limits of subjects’ inferential abilities in a way that is

not constrained to chain or collider narratives, but rather concerns a large set of

models and DGPs. Additionally, we study the prevalence and nature of Utility-

Based criteria. Third, Angrisani et al. (2023) find that the evolution of beliefs

during the Covid19 pandemic is consistent with the model of Eliaz and Spiegler

(2020). While their structural model fits the data well, their field data naturally

limits the extent to which they can rule out alternative explanations. More dis-

tantly related, Aina and Schneider (2025) ask how subjects quantitatively update

beliefs in a balls-and-urns setting when each of two competing information struc-

tures could have generated a given signal. Their setting does not allow discarding

information structures based on inconsistencies with the data.

The remainder of this paper proceeds as follows. Section 2 outlines the choice

setting and defines the choice criteria we study. Section 3 explains our identifica-

tion strategies along with details concerning the experimental design. Section 4

showcases our main empirical results. Finally, Section 5 concludes.

2 Setting and choice criteria

2.1 Choice problem

In each round of our experiment, subjects choose between two investment levels

I. They know that the investment maps into an outcome Y , and that their payoff

will be π(I) = Y − I, but they do not know the data-generating process (DGP)

that determines whether and how the investment affects the outcome. DGPs

involve four variables,6 the investment I, the outcome Y , and two covariates C1

and C2, represented to subjects, respectively, as , , and two counters of

different colors ( ). These variables are related through a recursive system of

Gaussian (‘regression’) equations that are linear in C1, C2, Y , and in the square

6This is the minimum number of variables that allows us to answer our research questions.
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root of I. Investment I is always exogenous, all other variables may be endogenous

or exogenous. Subjects simply learn that the variables interact through some

‘mechanism.’

Subjects choose an investment level by deciding which of two advisors to follow,

as shown in Figure 1. Each advisor has a potentially misspecified model in the

form a system of regression equations that is linear in C1, C2, Y , and in the

square root of I. The model is fitted to a large sample of data generated by the

DGP (formally: the population moments implied by the DGP). We communicate

models to subjects in natural language using terms such as ‘X directly affects

Y ,’ ‘X influences Y indirectly through Z,’ or ‘X is a symptom of Y ,’ both in

video and written format, and illustrated graphically. Each fitted model implies

a recommendation about the payoff-maximizing investment amount and predicts

the implied expected payout. It also predicts the payout the subject can expect

from following the recommendation of the competing advisor. We do not explain

the details of model-fitting, but we inform subjects that if an advisor’s model

is correct, the recommended investment is truly best for the subject, and that

advisor’s predictions about the payment amounts from following the own and the

competing advisor’s recommendation are accurate. We also tell subjects that all

these numbers are meaningless if an advisor’s model is incorrect.

When the subject selects an advisor, she automatically invests the amount

recommended by the chosen advisor. Her payoff is determined by that amount

and the DGP (with noise realizations set to zero). If the model that led to that

recommendation is misspecified, the subject will thus obtain a less-than-maximal

payoff.

Crucially, subjects can access data generated by the DGP to detect misspecified

models. As Figure 2 illustrates, subjects can view the unconditional correlation

between any pair of variables in the form of a bar chart (Panel A), and can

condition each correlation on any third variable (Panel B).7 We do not provide

any hints regarding the connection between models and empirical correlations.

7We do not show correlations that simultaneously condition on two variables, for two reasons.
First, such correlations would be needed only to test whether a diamond-shaped DAG (I →
J → K, I → L → K, with J and L unconnected) fits the data, which we do not include in the
experiment as it is not necessary to identify our decision criteria. Second, such data is rarely
available public debates.



Figure 1: Decision screen

Notes: Any element in the data dashboard at the top of the screen is clickable and displays the
information illustrated in Figure 2.
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Figure 2: Example data charts shown to subjects

A. Unconditional correlation B. Conditional correlation

Notes: Subjects can retrieve each chart by clicking on the corresponding link in their ‘data
dashboard.’ Panel A shows an example of a chart displaying an unconditional correlation. Panel
B shows an example of a chart displaying a conditional correlation.

It is up to the subjects to decide which of the 18 charts to examine. It is also

up to them to intuit any model’s correlational implications to connect it to the

data. While we illustrate models in the format of directed acyclic graphs (DAG)

that represent the underlying regression specifications, we do not provide any

explanation of that depiction.8

8For instance, if C1 denotes the yellow counter, the model of the advisor on the left in Figure
1, corresponds to the three-equation system

Y = βY + βC1Y C1 + ϵY

C1 = βC1
+ βIC1

√
I + ϵC1

C2 = βC2
+ βIC2

√
I + βC1C2

C1 + ϵC2

where variables β denote real-valued parameters to be estimated, and variables ϵ denote indepe-
nent mean zero Gaussian errors whose variances may differ from each other. All our graphical
illustrations of models are DAG-representations of the underlying system of regression equations.
There is one equation for each variable that has one or more links pointing to it, and all variables
whose links directly point into that variable (but not those that are merely indirectly connected)
appear on the right-hand side of the regression equation. The interpretation is causal; a variable
that appears as on the left hand side of an equation is endogenous, other variables are exogenous.
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2.2 Choice criteria

We now outline the choice criteria that describe decision approaches in our set-

ting and whose prevalence we will estimate. We first describe how correlational

information can be used to rule out misspecified models and define various levels

of partial inferential ability. These constitute our Fact-Based criteria. We then

present the Utility-Based criteria implied by the literatures on Narrative Compe-

tition and choice under uncertainty. Because subjects may combine Fact-Based

and Utility-Based criteria by first excluding misspecified models when able to and

applying Utility-Based criteria otherwise, our estimation will consider all possible

pairs of criteria from the two classes.

Fact-Based criteria A handful of archetypical causal models provide the key

insights required for excluding misspecified models in our setting. While defined

on two or three nodes, the corresponding insights also apply to the four-node

DAGs we use in our experiment. Appendix A.1 provides the corresponding formal

statement.

Observation 1. Consider a system of linear Gaussian equations that is consistent

with a DAG G defined over nodes N = {I, J,K}.

(i) If G : I → J , then generically cov(I, J) ̸= 0

(ii) (a) If G : I → K → J or G : I ← K → J , then generically cov(I, J) ̸= 0

(b) If G : I → K ← J , then cov(I, J) = 0.

(iii) (a) If G : I → K → J or G : I ← K → J , then cov(I, J |K) = 0

(b) If G : I → K ← J , then generically cov(I, J |K) ̸= 0.

While causation does not necessarily imply correlation, case (i) conveys that it

does so outside a knife-edge set of parameters. This fact also holds when causation

is indirect (as in the chain I → K → J) or when a common cause affects two

variables (as in the fork I ← K → J), as stated in case (ii)(a). The independence

implication in case (ii)(b) holds by definition; non-independence of I and J would

require some causal path between these nodes.

11



To understand the conditional correlational implications in case (iii), first con-

sider the chain, I → K → J . When I indirectly causes J but the mediator

K is held fixed, changes in I cannot translate into changes in J , and hence

cov(I, J |K) = 0. In the case of the fork, I ← K → J , the common cause K

is the sole reason why I and J are (unconditionally) correlated. Hence, holding

K fixed eliminates that correlation, and thus cov(I, J |K) = 0. The implication of

the v-collider I → K ← J becomes apparent in the example in which K is defined

as K = I + J . Then, once we fix K, larger I must coincide with smaller J .

To see how a subject can draw inferences about model misspecification, con-

sider the example of Figure 1. The right-hand side advisor’s model contains the

chain → → . If the data show a correlation between and

even if is held fixed, the subject can infer that that model must be mistaken,

following case (iii)(a) above.

Some correlational implications may be easier to intuit and understand than

others. We use this variation to characterize the limits to subjects’ inferential

abilities:

Definition 1. Fact-Based criteria

(i) Direct Links: Subjects discard a model if it posits a direct link between two

nodes I and J but I and J are not correlated in the data. (Case (i) in

Observation 1)

(ii) Unconditional Correlations: Subjects discard a model if any of its implied un-

conditional correlations (or absence thereof) are inconsistent with the data.

(Cases (i) and (ii) in Observation 1)

(iii) Conditional Correlations: Subjects discard a model if any of its implied

conditional correlations (or absence thereof) are inconsistent with the data.

(Case (iii) in Observation 1)

(iv) All correlations: Subjects discard any model that is based on a misspecified

model. (All cases in Observation 1)

Utility-Based criteria Utility-based criteria come to bear if individuals are

unable or unwilling make a Fact-Based choice. These criteria depend solely on the
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collection of the models’ implications about payoffs and recommended investments.

To define them formally, let M1 and M2 denote the models in the subjects’ choice

set. Let M∅ denote a third, unavailable, model in which the investment does not

affect the outcome. Define a state of the world s that encodes whether the DGP

is consistent with M1, M2, or M∅, denoted as s1, s2, and s∅, respectively. An act

M maps states into payoffs uM,s. The choice of model is an act.

The Narrative Equilibrium literature assumes that individuals choose the model

that solves maxM∈{M1,M2}maxs∈{s1,s2} uM,s—it promises the highest utility if true.

Such max-max decision-making is diametrically opposed to tendency for cautious

choice documented in the empirical literature of choice under ambiguity (Traut-

mann and Van De Kuilen, 2015). That literature suggests that a decision maker

will instead select the model that promises the highest payoff if one of the non-

selected models is correct. If the decision maker only considers the models available

for choice, M1 and M2, she will solve maxM∈{M1,M2}mins∈{s1,s2} uM,s. Hence, she

will first identify which model predicts the higher expected payoff from choosing

its competitor, and then choose that competitor.9 If the decision maker also

accounts for the possibility that neither model is correct, and that the DGP

may not feature an effect of the investment on the outcome at all, she solves

maxM∈{M1,M2}mins∈{s1,s2,s∅} uM,s. In this case, the possibility that the investment

will be wasted causes her to select the model that recommends the lowest invest-

ment. For completeness, we also consider the possibility that decision makers will

select the model that recommends the highest investment, for instance due to the

illusion of control (see, e.g., Stefan and David, 2013; Klusowski et al., 2021).10

Overall, we thus consider four Utility-Based criteria:

Definition 2.

(i) The Best-Case Promise criterion selects the model that promises the highest

payout if correct.

9When the two models are linear, this criterion is equivalent to selecting the model that
promises the lower payoff if correct, as we formally show in Appendix A.2.

10Choosing the model with the highest recommended investment does not correspond to
a max-max criterion. The reason is that a high investment might lead to low payoffs if it
substantially exceeds the optimal investment.
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(ii) The Worst-Case Promise criterion selects the model that promises the highest

payout if the competing model is correct.

(iii) The Minimize Investment criterion selects the model that implies the lowest

investment.

(iv) The Maximize Investment criterion selects the model that implies the highest

investment.

Types We define a type as a pair consisting of a Fact-Based criterion and a

Utility-Based criterion. A decision maker may apply a criterion from only one

class. Either order of application is possible, but since each Utility-Based criterion

uniquely determines choice, any subject who starts with a Utility-Based criterion

necessarily ignores all Fact-Based criteria. We assume that individuals randomize

uniformly across any options that remain after applying their decision criteria.

Definition 3. A Type is a pair of a (possibly empty) fact-based criterion and

a (possibly empty) utility-based criterion. Indeterminacies are resolved through

uniform randomization.

3 Identification and design specifics

Our experiment has two parts. The Comprehensive Part (Subsection 3.1) is our

main focus. It identifies the frequency of types when subjects have access to corre-

lational data. The Utility-Focused Part (Subsection 3.2) focuses on Utility-Based

criteria by withholding the information required to apply Fact-Based criteria. It

includes treatments to assess whether subjects who follow the Best-Case Promise

criterion do so intentionally or by mistake. Subsection 3.3 provides details of the

experimental implementation.

3.1 Comprehensive Part

The design of the Comprehensive Part follows the standard revealed-preference

logic: each subject makes a choice from a sequence of menus constructed so that

the overall choice distribution reveals the distribution of criteria used. Formally,
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we will estimate type frequencies using a finite-mixture approach closely related

to the Strategy Frequency Estimation Method of Dal Bó and Fréchette (2011,

2019).11 Out-of-sample prediction analysis addresses concerns about overfitting.

While the approach is conceptually simple, constructing a sequence of menus

that identifies the frequency of all types is challenging. Identification requires

variation in observed and implied correlations as well as in recommendations and

predictions. To identify the share of subjects whose choices follow the Best-Case

Promise criterion, for example, we would ideally vary only which model makes the

higher promise while keeping everything else constant. The fraction of subjects

whose choices change in response would then indicate the prevalence of that crite-

rion. However, we cannot vary such properties independently, since we can choose

only model structures and the DGP, not the resulting identifying properties. For

instance, varying the set of correlations that can inform choice requires chang-

ing a model’s structure, which in turn necessarily alters its recommendations and

predictions.

Our construction of a sequence of menus for identification relies on two insights.

First, assessing whether a DAG fits the data requires checking only whether the

predicted conditional (in)dependence relations hold, not the magnitudes of these

relations. Thus, inferences based on any Fact-Based criterion are unaffected by the

DGP’s parameters as long as its structure remains unchanged. Once a DGP and a

misspecified model are fixed, we can therefore freely choose the DGP’s parameters

to identify Utility-Based criteria. Second, as we show in Appendix A.2, for any pair

of models we can vary independently whether the model recommending the higher

investment also makes the higher or lower promise by adjusting the distribution of

investments in the simulated empirical data used for model fitting. This strategy

allows us to distinguish, for example, the Worst-Case Promise criterion from the

Minimize Investment criterion.

11Unlike Dal Bó and Fréchette (2011, 2019), some types in our setting predict indifference on
certain choice sets, and we estimate our model using GMM rather than MLE.

15



Table 1: Menus

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Menu DGP Competitor Description Criterion identifies Model chosen by

misspecified model

Direct Uncond. Cond. Best-Case Min.

Links corr. corr. Promise Invest.

M1
I

C1

Y

C2

I

C2

Y

C1

Your Bonus only depends on

one of the Counters. Your

Action influences that Counter

both directly and through the

other Counter.

No No Yes DGP DGP

M2 No No Yes Comp. DGP

M3
I

C1

C2

Y

I

C2

C1

Y

Your Action indirectly influ-

ences your Bonus. It influ-

ences the first Counter which,

in turn, influences the second

Counter, which then influences

your Bonus.

No No Yes DGP Comp.

M4
I

Y

C2

C1 I

Y

C1

C2 Your Action influences your

Bonus directly, as does one of

the Counters. That counter

is not influenced by anything.

The other Counter is a symp-

tom of both the first Counter

and your bonus.

No Yes No DGP Comp.

M5 No Yes No Comp. Comp.

M6
I

Y

C2

C1 I

Y

C1

C2 Your Action influences your

Bonus directly, as does one of

the Counters. That counter

is not influenced by anything.

The other Counter is a symp-

tom of both your Action and

your Bonus.

Yes Yes No DGP Comp.

M7 Yes Yes No Comp. Comp.

M8
I

C1

Y

C2

I

C2

Y

C1

Your Action directly influ-

ences one of the Counters.

That Counter influences your

Bonus both directly and

through the other counter.

No No Yes Comp. DGP

M9 No No Yes DGP DGP
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Table 1: Menus (continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Menu DGP Competitor Description Criterion identifies Model chosen by

misspecified model

Direct Uncond. Cond. Best-Case Min.

Links corr. corr. Promise Invest.

M10
I

C1

Y C2

I

C2

Y C1

Your Action indirectly influ-

ences your Bonus through one

of the Counters. The second

Counter is a symptom of the

Bonus.

No No Yes DGP Comp.

M11
I

Y

C2

C1 I

Y

C1

C2 Your Action influences your

Bonus directly, as does one of

the Counters. That counter

is not influenced by anything.

The other Counter is a symp-

tom of your Bonus.

No Yes Yes DGP Comp.

M12 No Yes Yes Comp. Comp.

M13
I

C1

Y

C2 I

C2

Y

C1 Your Bonus directly depends

on both Counters. Your Ac-

tion influences one of these

Counters, as does the second

Counter. The second counter

is not influenced by anything.

Yes Yes No DGP Comp.

M14 Yes Yes No Comp. Comp.

Notes: I denotes the investment, referred to as Action in the videos. Column 4 shows the text spoken in

the video. In the screens that correspond to Figure 1, the counters are referred to by color. In the case

of M1, for instance, the text for one of the models is “Your Bonus only depends on the red counter. Your

Action influences that Counter both directly and through the blue counter.’

17



Three requirements lead us to impose further restrictions on the sequence of

menus we construct. First, Fact-Based criteria should be applicable to distinguish

between the models in each menu. Hence, the two models in each menu must

stem from two different Markov-equivalence classes.12 Second, subjects should

be unable to choose based on preferences over model structures, such as favor-

ing simpler or more complex models.13 To achieve this, the two models in any

given menu differ only in that the position of the two covariates are interchanged.

Third, no two models may recommend the same investment, for otherwise subjects

would have no instrumental reason to distinguish between them. Appendix A.2

shows that the set of all possible DAGs in our setting can be partitioned into 15

action-equivalence classes, with any two DAGs within the same class implying the

same optimal investment and promises for any DGP. To meet the requirement,

each menu contains models from two different action-equivalence classes. We also

impose the technical constraints that none of our models contain isolated subsets

of variables and that all have generic (non-knife-edge) parameters.14

After heuristically constructing a sequence of fourteen menus, we formally ver-

ify that it identifies the full vector of type probabilities, as described in Subsection

4.1. To illustrate the strength of identification achieved by this sequence, Ap-

pendix B.1 reports the distance between the choice patterns of all pairs of types.

Table 1 presents the resulting sequence M = (M1, . . . ,M14) used to identify

the distribution of types (M stands for main). Each menu in M includes one

correct and one misspecified model. The table reports, for each menu, whether

12Two DAGs are Markov-equivalent if they are indistinguishable based on their conditional
independence relationships; see Verma and Pearl (1990) for a characterization.

13An earlier version of this paper included a laboratory experiment that also measured pref-
erences concerning the complexity or simplicity of causal structures. In that sample, 32.2% of
subjects chose based on such criteria in some rounds. Overall, subjects favored more complex
structures (22.9%) over simpler ones (9.3%), possibly reflecting the heuristic that models with
more links seem better able to fit any data pattern. Extending the experiment to identify such
Structure-Based criteria greatly increases the complexity of the design.

14A subset of variables is isolated if it neither influences nor is influenced by variables outside
that subset. In our setting, a property of the parameter vector is generic if it is violated only
on a subset of the parameter space with Lebesgue measure zero.
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a given fact-based criterion can exclude the misspecified model and shows the

choices implied by the Best-Case Promise and Minimize Investment criteria. The

Worst-Case Promise and Maximize Investment criteria select the opposite model

in each case. Given the restrictions imposed on the menus, we can distinguish 17

types.15

In addition to the 14 main menus, we include 4 menus W = (W1, . . . ,W4)

(w for “wrong”) in which both models are inconsistent with the DGP. Randomly

interspersed with the main menus, these ensure that ruling out one misspecified

model does not imply that the remaining model is correct. They will also provide

insight into the nature of subjects’ decision making; see Section 4.2. Two addi-

tional practice menus, P = (P1, P2), familiarize subjects with the decision interface

and are always presented first. As preregistered, we exclude choice data from the

practice menus from analysis.

3.2 Utility-Focused Part

The Utility-Focused Part withholds the model descriptions and empirical data

necessary for applying Fact-Based criteria. To avoid the need to account for the

support of subjects’ beliefs, which distinguishes the Worst-Case Promise and Min-

imize Investment criteria, we inform subjects that one model in each round is cor-

rect, and we withhold information about the recommended investment amounts.

As in the Comprehensive Part, variation in the menus across multiple rounds

reveals choice criteria.

If the Best-Case Promise criterion finds empirical support, the question arises

why our results differ from research on decision making under uncertainty, which

typically finds a preference for cautious choice. We consider two hypotheses. First,

Best-Case Promise choices may occur when uncertainty arises from incomplete

15There are 4 Utility-Based and 4 Fact-Based criteria. Including randomization within each
class increases these numbers to 5 and 5, respectively. A type who always identifies the correct
model never reveals a Utility-Based criterion, implying a maximum of 21 types. Our model
cannot separately identify a fully random type from a noisy population that follows nontrivial
criteria, so we assume no subject randomizes throughout, leaving 20 types. Moreover, for subjects
using the Maximize Investment criterion, we cannot distinguish whether they apply it alone or in
combination with an imperfect Fact-Based criterion (Direct Links, Unconditional Correlations,
Conditional Correlations). We attribute such choices to the type using the Maximize Investment
criterion without any Fact-Based component, yielding 17 types in total.



Figure 3: Decision screen in the Utility-Focused part

Model frame

A. State constant B. Action constant

Gamble frame

C. State constant D. Action constant

knowledge about a knowable process (epistemic uncertainty), even if they do not

occur in settings characterized by intrinsic randomness (aleatory uncertainty),

where cautious choice is most often observed.16 To test this hypothesis, subjects

make choices in two frames. The Model frame mirrors Part 1 of the experiment

(epistemic uncertainty; Panel A of Figure 3). The Gamble frame presents struc-

turally identical choices in a balls-and-urns setting (aleatory uncertainty; Panel

D). Subjects learn that either a blue or an orange ball will be drawn from an urn

of unknown composition and choose between a bet on blue or and a bet on orange.

The second hypothesis is that choices consistent with the Best-Case Promise

criterion reflect a failure of contingent reasoning (Niederle and Vespa, 2023). This

failure may arise when model predictions are communicated in a way natural to

the task but different from how uncertainty is typically presented in the litera-

16Prior work, if anything, finds that people are more reluctant to bet under epistemic than
under aleatory uncertainty (Fox and Ülkümen, 2011).
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ture. Using the notation of Subsection 2.2, the predictions of model i fit to data

are naturally expressed as what the subject can expect, according to that model,

from following its recommendation (u(a∗i , si)) and from choosing a different action

(u(a∗−i, si)), as shown in Panel A of Figure 3. We refer to this as the State-Constant

presentation. Crucially, these two values do not describe the payoff distribution

the subject faces when choosing model i: if she chooses model i but the competing

model is correct, her payoff is u(a∗i , s−i), which is a prediction of model −i, not
of model i. Determining the possible payoffs from choosing a model thus requires

contingent reasoning. Hence, subjects may misinterpret or neglect worst-case pay-

offs. To test this hypothesis, the Action-Constant presentation (Panel B) directly

communicates the payoffs from choosing model i, namely
(
u(ai, si), u(ai, s−i)

)
.

For completeness, we also include a State-Constant presentation for choices in the

Gamble frame (Panel D).

A difference in choices between the State-Constant and Action-Constant pre-

sentations alone does not reveal which presentation reflects subjects’ true pref-

erences. To address this question, we vary the payout structure. In the Spread

condition, payouts mirror those in Part 1 of the experiment: one option offers a

better upside but a worse downside than the other, as necessarily implied by fit-

ting linear models to data (see Appendix A.2). In the Dominance condition, one

option offers both a better upside and a more favorable downside and is therefore

first-order stochastically dominant. We will attribute the choice of a dominated

option to a failure of contingent reasoning induced by the presentation mode.17

Overall, the Utility-Focused part of our experiment thus follows a 2 × 2 × 2

design, as we vary the frame (Model frame vs. Gamble frame), the presentation

mode (State Constant vs. Action Constant) and the payment vectors (Spread vs.

Dominance). Subjects encouter each menu twice, with minor variation in payoffs,

and thus make decisions in a total of 16 rounds. In one version of each menu, we

flip the location of the payoff information on the screen in one but not the other

speech bubble.

17Choosing a dominated option indicates misunderstanding of worst-case payoffs rather than
mere neglect of them. Neglect would still lead subjects to select the dominant option.
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3.3 Experiment implementation

All subjects first complete the Comprehensive Part, which is our main focus and

cognitively more demanding than the Utility-Focused Part, which subjects com-

plete second. The experiment then proceeds with additional elicitations. Here, we

explain key design specifics. We defer details to Appendix C. Appendix E provides

screenshots of the complete study interface.

In the Comprehensive Part, we ensure that subjects pay attention to the mod-

els by starting each round with a video. For each menu, the video plays a spoken

version of the explanation in column 4 of Table 1 and gradually builds the graphi-

cal representation shown in columns 2 and 3.18 The instructions emphasize that in

some rounds both advisors are wrong, that the data do not affect advisors’ model

specifications, that some advisors’ models may conflict with the correlational data

generated by the DGP, that recommendations and promises result from fitting

the model to the data, and that the model fitting contains no errors, yet that rec-

ommendations and promises from misspecified models are nevertheless incorrect.

They also require subjects to open at least one chart chart showing unconditional

correlations and one showing conditional correlations. To ensure comprehension

of the instructions and the payoff structure, subjects can only continue once they

pass two comprehension checks that are difficult to answer correctly by chance.

The comprehension checks contain no reference to the connection between models

and data.19

To maximize clarity, we adopt four design choices. First, the data charts omit

statistical uncertainty, which could distract from our main research questions and

is seldom shown in data visualizations aimed for the general public. Second, to

abstract from overfitting, the charts display the true correlations implied by the

DGP rather than finite-sample estimates. Third, we choose DGP parameters that

yield few negative correlations, as such correlations may be harder for subjects to

process, especially when chained in sequence. Fourth, we ensure that recommen-

dations and promises differ clearly within each menu but are as similar as possible

18The video constructs a single DAG, with two indistinguishable grey counters indicating that
the models differ only in which counter occupies which position.

19In each check, subjects classify each of eight statements as correct or incorrect. If they err,
they are told only that a mistake occurred, not which or how many statements are wrong, and
must revisit the instructions until passing.
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across menus. In the High Stakes condition, one model generally promises around

Fr. 72 from following it and around Fr. 18 from following the competitor, while

the other promises around Fr. 48 from following it and around Fr. 42 from fol-

lowing the competitor. Amounts are reduced by two-thirds in the Low Stakes

condition.20

The Utility-Focused Part begins with instructions and is block-randomized:

some subjects first make all decisions in the Model frame, others first make all

decisions in the Gamble frame. Within each frame, subjects first complete deci-

sions either in the State-Constant or in the Action-Constant presentation mode,

and then switch to the respective other presentation mode. Each of these four

blocks begins with a screen explaining the payoff format. Subjects must correctly

indicate how much they would earn from choosing the option on the left if the

option on the right turned out to be ex-post payoff-maximizing. The possible

payouts mirror those in the Comprehensive Part. In the Spread condition, the

payoff vectors are (72, 18) and (48, 42). In the Dominance condition, they are

(72, 42) and (48, 18). To avoid repetition across rounds, we uniformly randomly

vary payment amounts within Fr. 1.20 of these values. All amounts are reduced

by two-thirds in the Low Stakes condition.

Toward the end of the study, we elicit several individual characteristics to relate

to the use of decision criteria. These include each subject’s field of study (classified

as STEM, economics and business, or other) and measures of familiarity with

concepts in probabilistic causal inference: completing the aphorism “correlation

does not. . . ,” writing out the name of the mathematical object P (A|B) in words,

spelling out the acronym “DAG,” and reporting whether they have taken a class

on causal statistical inference.21

We also elicit risk preferences following Eckel and Grossman (2008) and ambi-

guity preferences following Dimmock et al. (2015), both incentivized. To reduce

noise and allow OR-IV estimation (Gillen et al., 2019), subjects complete two ver-

sions of each elicitation with slightly different parameters. We also administer an

extended Cognitive Reflection Test (Frederick, 2005; Thomson and Oppenheimer,

20Appendix Table C.4 lists the precise amounts for each menu. In some cases, it was not
possible to choose DGP parameters to produce precisely these amounts as model implications.

21We score the first three items by whether responses include the strings “caus,” “conditional”
or “given,” and “acyc,” respectively.
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2016) and measure belief in pseudoscience (Torres et al., 2020). Subjects report

their gender and the Swiss political party closest to their views, which we locate

on the political spectrum using Jolly et al. (2022).22 Finally, subjects describe

in their own words how they typically made decisions in the main rounds of the

experiment.

Subjects learn that a single decision from the entire study will be randomly

selected for payment. To eliminate the influence of standard risk preferences,

subjects are paid the expected value of their chosen option according to the DGP.

The model’s stochasticity serves solely to generate variation for data fitting.

4 Analysis

We conducted the experiment with 414 subjects in June and July 2025 at the Lab-

oratory for Experimental and Behavioral Economics at the University of Zurich.

The mean payment was Fr. 47.63 (USD 60.00), with averages of Fr. 31.96 and

Fr. 63.78 in the Low and High Stakes conditions, respectively.23 Appendix D.1

provides summary statistics of our sample’s composition. Subjects were required

to spend at least 75 minutes in the lab. Some took up to 2 hours, with a median

completion time of around 80 minutes. The median time spent on a main round

was 50 seconds.24

We organize the analysis into five subsections. The first three concern the

Comprehensive Part. Subsection 4.1 documents subjects’ remarkable ability to

discard misspecified models and presents the main estimates of all decision crite-

ria. Subsection 4.2 focuses on menus in which all available models are misspecified

to show that subjects draw inferences by detecting qualitative inconsistencies be-

tween model implications and empirical data rather than through quantitative

reasoning. Subsection 4.3 uses out-of-sample prediction analysis to demonstrate

the robustness of our results. It also provides parsimonious models whose pre-

22The survey lacks a score for the Swiss Communist Party (“Partei der Arbeit”); we assign
it a value of 0, the leftmost position.

23We preregistered a target sample size of 400 subjects, https://www.

socialscienceregistry.org/trials/16173.
24The median time spent on a practice round was 119 seconds. Appendix D.2 examines order

effects. Minor order effects in terms of time spent per round appear to reflect learning rather
than fatigue, as subjects viewed data charts at a constant rate throughout the experiment.
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dictive accuracy rivals that of our unrestricted model. Subsection 4.4 studies the

Best-Case Promise criterion by analyzing choices from the Utility-Focused Part

of the experiment. Finally, Subsection 4.5 relates decision-making to subjects’

educational background, political preferences, and demographic and psychological

traits.

4.1 Comprehensive Part

Our main evidence consists of the incentivized choices across the 14 menus in

set M. To help interpret these choices, Panel A of Figure 4 shows the predicted

choice distributions for selected types across the menus. A subject able to link each

model’s correlational implications to the data will always select the correct model.

In contrast, a subject who processes only unconditional correlations will select the

correct model in menus M4 to M7 and M11 to M14. For the remaining menus,

light blue shading indicates uniform randomization, reflecting the randomization

assumption made in Section 2.2.

Panel B shows the aggregate empirical choice distributions for the Low and

High Stakes conditions. Three patterns emerge. First, subjects often choose the

correct model. The aggregate data most closely match the type that consistently

selects the correct model. In fact, in each round, at least two thirds of subjects

choose the correct model, and the average subject does so in 10 of the 14 rounds—

well above the random-choice benchmark of 7. Second, choices of misspecified

models are also common (about one fifth to one third of cases). These choices

vary systematically across menus but do not resemble any single type’s pattern,

indicating heterogeneity across subjects. Third, choice distributions are similar

across stakes conditions: higher stakes do not lead subjects to select the correct

model more often, if at all. Hence, failures to identify the correct model reflect

limited ability rather than lack of motivation.25

Mixture model To draw detailed inferences about the use of each decision cri-

terion, we fit a finite mixture model that yields an estimate (t̂1, . . . , t̂n) of the

25Pilot experiments on Prolific also showed no stake effects. However, more than 80% of those
subjects refused to view even a single data chart, apparently attempting to rush through the
study.
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Figure 4: Fingerprints of selected choice criteria

Menu M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14

A. Theoretical predictions of selected types

All Correlations

DGP
Competitor

Only Unconditional Correlations

DGP
Competitor

Only Conditional Correlations

DGP
Competitor

Direct Links

DGP
Competitor

High Promise

DGP
Competitor

Low Spending

DGP
Competitor

B. Empirical choices

Low stakes

DGP 74 77 70 70 67 72 75 69 70 76 75 70 70 79
Competitor 26 23 30 30 33 28 25 31 30 24 25 30 30 21

High stakes

DGP 66 73 69 65 70 70 77 68 72 76 74 74 68 72
Competitor 34 27 31 35 30 30 23 32 28 24 26 26 32 28

Notes: Each column corresponds to a menu. We use dark shading if the criterion chooses
the corresponding option, and no shading if the rule does not choose the option. Intermediate
shades indicate the number of tied options. In Panel B, numbers list the percentage of subjects
choosing a given option. The extent of shading reflects percentages.
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frequency ti of each type i in our data. Conceptually, summing the theoretically

predicted choice distributions in Panel A of Figure 4, weighted by a candidate

type distribution t̃ = (t̃1, . . . , t̃n), gives the aggregate choice distribution we would

expect to observe. The estimation procedure searches for the distribution t̃ that

minimizes the distance between predicted and observed aggregate choice distribu-

tions. To allow for stochastic choice, we assume that in each round a subject either

selects a type-consistent option with probability (1− q) or randomizes uniformly

and independently across all options with probability q, following Costa-Gomes

and Crawford (2006); Ambuehl and Bernheim (forthcoming).26

We define the distance between the predicted and observed choice distributions

as the weighted sum of all first and second moments. The first moments are the

differences between predicted and observed probabilities of choosing the correct

model for each menu m. The second moments are the corresponding differences

conditional on choices in another menu m′, for all menu pairs (m,m′).27 We esti-

mate the model using the generalized method of moments (GMM), applying the

standard two-stage feasible GMM procedure to obtain optimal moment weights.

Appendix B.2 provides details.

Our mixture model has three attractive features. First, it guarantees that

the estimated type distribution converges to the true population distribution as

the number of subjects increases. Individual-level approaches such as Bayesian

classifiers offer no such guarantee when the number of decisions per subject is fixed.

They may therefore perform poorly when choices are noisy, as our simulations

confirm. Second, holding the stochastic choice probability q fixed, the predicted

aggregate choice distribution is a linear function of the type frequencies. This

linearity allows analytical proof of identification: a sequence of menus identifies

26We designed the experiment to make this assumption plausible. Subjects saw menus in
individually randomized order, ensuring that any inattention is evenly distributed across menus.
The screen position of models was also randomized, so tendencies such as always choosing the
right-hand option appear as uniform randomization across menus.

27Second moments are needed for identification. Suppose there are two menus, each with
two options (A, B), and three types: type 1 always chooses A, type 2 always chooses B, and
type 3 randomizes. If A is chosen 50% of the time in both menus, first moments alone cannot
distinguish between a population of 50% type 1 and 50% type 2, a population of only type 3,
or a mixture of the two. Including second moments resolves this, as only type 3 produces the
pattern of choosing A in one menu and B in the other.

27



the vector of type weights if this linear function has full rank.28 Third, because of

linearity, the GMM objective function is quadratic for any fixed noise probability.

Numerical optimization is therefore rapid and will not get stuck in local optima,

even for large type sets.29 The model has two limitations. First, it assumes that

the mean noise probability is identical across types. Second, the stochastic choice

probability and the share of subjects who randomize uniformly throughout are

not separately identifiable. We interpret the data under the assumption that the

latter share is zero.

Model estimates Our estimation results confirm the visual impression from

Figure 4: in both the Low and High Stakes conditions, the most common type

draws correct inferences from both conditional and unconditional correlations.

This type accounts for 65.4% (s.e. 4.9%) and 56.9% (s.e. 4.8%) of subjects in

the Low and High Stakes conditions, respectively. These shares do not imply

that more than half the subjects identify the correct model in every round. The

estimated noise parameters are 24.2% (s.e. 2.0%) and 21.4% (s.e. 2.0%) in the

Low and High Stakes conditions, respectively. Thus, even subjects who generally

identify the correct advisor randomize in roughly one out of five rounds and thus

select the wrong model in about one out of ten, with such errors distributed

randomly across menus and options. Each remaining type accounts for less than

10% of subjects, though many receive nontrivial weight. Appendix D.3 reports

the complete estimated type vector.

To summarize the remaining subjects, recall that each type combines a Fact-

Based and a Utility-Based criterion. We estimate the prevalence of each Fact-

Based criterion by summing over all types that apply it. Likewise, marginalizing

over Fact-Based criteria yields the distribution of Utility-Based criteria. Aggre-

gating across types also helps average out noise that could affect estimates when

many types are fitted to limited data.

28We prove identification with the noise probability held fixed and verify through simulations
that the estimator correctly recovers the noise probability in synthetic data.

29Because these properties hold only when the noise probability is fixed, we define a grid of
starting values for it, run the minimization for each, and select the global optimum.
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Figure 5: Distribution of decision criteria

A. Fact-based criteria B. Utility-based criteria
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Notes: Pooled across stakes, and training and test sets. Whiskers show 95%-confidence inter-
vals, truncated at 0. Panel A: Panel B: Estimates of advice-based criteria in Experiment 1 are
shown conditional on not using the Conditional Correlations criterion.

Panel A of Figure 5 plots the distribution of Fact-Based criteria using all

14 rounds and pooling across the stakes conditions.30 Next to the majority of

subjects who consistently identify the correct model, 24.1% make partly fact-based

decisions. While similar numbers of subjects use each of the partial Fact-Based

criteria, two of these three criteria only require an understanding of unconditional

but not conditional correlations. The remaining 17.5% (s.e. 1.7%) use no Fact-

Based criterion at all.

Panel B displays the distribution of Utility-Based criteria, focusing on sub-

jects who do not consistently select the correct model. Support for the Best-Case

Promise criterion is minimal (3.8%, s.e. 1.6%). Instead, subjects who deploy

Utility-Based criteria optimize worst-case outcomes (18.3%, s.e. 3.1%), either

through the Worst-Case Promise criterion (11.6%, s.e. 1.7%) or through the Min-

imal Investment criterion (6.8%, s.e. 2.4%). Nonetheless, among subjects who

fail to identify the correct model through Fact-Based criteria in some rounds, the

30Appendix D.4 shows these distributions estimated only using the training set and split by
stakes condition, as preregistered. The qualitative results are unchanged, although the use of a
much smaller sample greatly increases the standard errors of the estimates.
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modal choice (17.5%, s.e. 1.7%) is uniform randomization, consistent with the

principle of insufficient reason.

Decision strategies What strategies help subjects identify the correct model?

We argue that subjects rely on qualitative inference, looking for inconsistencies

between model implications and the data. A competing hypothesis is that subjects

rely on quantitative inference by visually estimating the return to investment

from the chart showing the relation between investment and bonus. While a few

subjects report doing so when asked to describe their decision-making in words,

viewing data show this behavior is rare. Subjects view the investment/bonus-chart

exclusively in only 2.1% of cases. Moreover, they view it at all in just 26.2% of

cases, compared with 42.4% and 41.7% for the charts relating investment to each

covariate, respectively. For subjects seeking qualitative inconsistencies between

model implications and data, the latter charts are useful in many rounds, whereas

the investment/bonus-chart never serves that purpose.

The fact that subjects frequently choose the correct model despite receiving no

assistance suggests that the qualitative, model-based inference in our experiment

comes naturally to many people, unlike the purely quantitative reasoning required

in standard balls-and-urns belief-updating tasks.

How do subjects draw these inferences? Do they reason from data to models,

viewing charts until a pattern stands out to them, or from models to data, intu-

iting the models’ correlational implications and checking the data for those that

distinguish the models? Several observations support the latter hypothesis. Of the

18 charts available per menu, the median subject views only four, consistent with

the idea that they know what to look for. Of the 12 charts showing conditional

correlations, the average subject views 2.84, of which only 0.68 do not distinguish

the models. Viewing non-distinguishing charts can still be useful, as it helps detect

when both causal models in a round are misspecified. Targeting is less precise for

unconditional correlations, likely due to individual heterogeneity, but still consis-

tent with purposeful selection: of the 6 charts showing unconditional correlations,
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subjects view on average 1.85, roughly half of which (0.87) distinguish the models.

This far exceeds what would be expected if chart selection were random.31

Subjects’ general sophistication A potential criticism of our interpretation

is that our participants’ performance reflects an unusual level of sophistication

and therefore may not generalize to other subject pools. Our data cast doubt

on this view. Although a substantial share of subjects major in STEM (64%),

their statistical sophistication is limited. Only 54% can complete the aphorism

“Correlation does not. . . ,” 22.5% report having taken a class on statistical causal

inference, one quarter can name the expression ‘P (A|B),’ and 8% can spell out

“DAG.” A comparison of our subjects’ mean CRT score of 71.4% to that of other

subject pools suggests a similar conclusion. Students at TU and LMU Munich

achieve 75%, (Coutts et al., 2025), and those at Mannheim University and Osaka

University score 68% and 83%, respectively (Glaser et al., 2019; Hanaki et al.,

2021). While these scores are higher than those found in representative U.S.

samples (58.3%, Caplin et al., 2023), they fall short of scores observed among

professionals in the financial (Thoma et al., 2015; Angrisani et al., 2022; Weitzel

et al., 2020) and oil-producing (Welsh and Begg, 2017) industries.32

Overall, we find that subjects display a remarkable ability to intuit models’

correlational implications and verify them against empirical data to rule out mis-

specified models. Utility-Based criteria that receive empirical support maximize

worst-case rather than best-case payoffs.33 Support for the central assumption of

the Narrative Competition literature, the Best-Case Promise criterion, is minimal.

These conclusions remain robust to a threefold increase in stakes.

31In an average round, 86% of subjects view at least one data chart. Overall, subjects view at
least one chart that distinguishes the models in 60.3% of rounds, consistent with our estimated
Fact-Based criteria in Figure 5, given the estimated random-choice probability of 24.9%.

32Different studies use different extensions of the CRT test. While we use Thomson and
Oppenheimer (2016), the studies cited above predominantly use Toplak et al. (2014), which
limits comparability. (Hanaki et al. (2021) also includes questions from Finucane and Gullion
(2010)). Performance on the three original CRT questions (Frederick, 2005) is available for
three of these studies. Subjects in Glaser et al. (2019), Thoma et al. (2015), and Welsh and
Begg (2017) answer 68%, 91%, and 81% correctly, respectively. Our subjects’ score of 77.3% on
those three questions falls well within this range.

33When asked to describe their decision process, many subjects report trying to infer the
correct model from the data and defaulting to payoff safety when uncertain.
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4.2 Choices when both advisors are wrong

We next examine choices on menus in W, where both models are inconsistent

with the data.34 A first finding is that the average subject does not merely select

the remaining option after ruling out one misspecified model. Instead, subjects

also evaluate whether the remaining models fit the data: when neither model is

correct, the average number of charts viewed rises from 4.7 to 5.2 (p < 0.01), and

average time per round increases from 50 to 68 seconds.

More importantly, choices from menus in W provide further evidence that

subjects reason qualitatively rather than quantitatively, as follows. Once a subject

determines that both available models are misspecified, several decision approaches

are possible. First, she may continue reasoning qualitatively and select the model

with fewer inconsistencies between the data and its correlational implications. As

shown in Panel B of Table 2, this criterion applies to all menus in W except W1

and requires understanding conditional correlational implications. Second, she

may reason quantitatively by estimating the strength of the relationship between

investment and bonus from the corresponding chart and choosing the model whose

recommended investment is closer to the optimal level implied by that chart, as

listed in Panel C. Third, she may revert to a Utility-Based criterion when the

available Fact-Based criteria of Definition 1 do not yield a clear choice.

Panel D displays subjects’ choices. In menus where one model has fewer cor-

relational inconsistencies with the DGP, about 60 to 70% of subjects choose that

model. When both models have the same number of inconsistencies (menu W1),

choices are evenly split. This pattern indicates that minimizing the number of

inconsistencies is subjects’ preferred criterion. In contrast, quantitative reasoning

predicts that subjects predominantly choose model 2 in menus W1 and W2, yet

they do so in only 40 to 50% of cases.

34The analysis in this subsection is exploratory and was not preregistered.
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Table 2: Menus with two misspecified models

W1 W2 W3 W4

A. DGP and model structures
DGP

C2

I

Y

C1 I

C1

Y

C2

I

C1

Y C2

I

C1

Y

C2

Model 1
I

C1

Y

C2

I

C1

Y

C2 I

C1

C2

Y

I

C1

Y C2

Model 2
I

C2

Y

C1

I

C2

Y

C1 I

C2

C1

Y

I

C2

Y C1

Description Your Action indirectly
influences your Bonus
through one of the
Counters. The second
Counter is a symptom
of both your Action and
the first Counter.

Your Action indirectly
influences your Bonus
through one of the
counters. The other
counter is not influenced
by anything, but it has
an additional, direct
influence on your Bonus.

Your Action indirectly
influences your Bonus.
It influences the first
Counter which, in turn,
influences the second
Counter, which then
influences your Bonus.

Your Action indirectly
influences your Bonus
through one of the
Counters. The second
Counter is a symptom of
the Bonus.

B. Inconsistencies with DGP
Unconditional correlations
Model 1 4 4 0 0
Model 2 4 4 0 0

Conditional correlations
Model 1 10 2 8 6
Model 2 10 10 12 14

C. Implied optimal investment
DGP 12.40 78.16 28.88 18.07
Model 1 0.00 8.03 24.68 18.07
Model 2 10.04 36.08 3.26 1.17

D. Choice frequencies
Low stakes

Model 1 51 61 69 68

Model 2 49 39 31 32

High stakes

Model 1 50 57 62 68

Model 2 50 43 38 32

Notes: Panel A shows the structure of the DGP, and the two available models in each menu in
set W. Panel B shows the number of inconsistencies between each model and the DGP. Panel
C shows the investment amounts implied as optimal by each model when fit to the DGP and
by the DGP itself in the Low Stakes condition. Panel D shows empirical choice frequencies in
percent.
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To formally estimate the prevalence of the decision approaches, we fit a version

of our mixture model on choices from the menus in W. We exclude all Fact-Based

criteria from Definition 1 since W is constructed such that these criteria do not

apply. Instead, we include a type that minimizes the number of inconsistencies

between the chosen model and the DGP (randomizing when the numbers are

equal),35 and a type that selects the model whose implied optimal investment is

closest to the true value. The latter type’s behavior coincides with the Maximize

Investment criterion. Given its negligible incidence in Section 4.1, we set the

fraction of subjects following that criterion to zero and attribute the corresponding

choices to quantitative fact-based reasoning. We also include all types that apply

one of the Utility-Based criteria (except the Maximize Investment criterion) from

Definition 2 without combining it with any other criterion.

Table 3: Distribution of types when both models are inconsistent with the DGP

(1) (2) (3)

Stakes Low High p-value

Utility-Based Criteria
Best-Case Promise 0.059 0.121 0.202

(0.034) (0.035)
Worst-Case Promise 0.086 0.222 0.005

(0.034) (0.035)
Minimize Investment 0.108 0.067 0.359

(0.031) (0.033)
Data-Based Criteria
Closest recommendation 0.134 0.138 0.941

(0.037) (0.038)
Fewest Inconsistencies 0.614 0.453 0.000

(0.028) (0.035)

Noise 0.450 0.418 0.682
(0.055) (0.054)

Subjects 210 204

Notes: Column 3 shows the p-values of a z-test of the null hypothesis that a criterion is equally
common across the Low and High Stakes conditions.

35We assume randomization because subjects rarely combine Utility-Based and Data-Based
criteria in Section 4.1.
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Table 3 reports the results. Consistent with the visual evidence from Table 2,

subjects who reason qualitatively by minimizing the number of inconsistencies are

far more prevalent than those who reason quantitatively by selecting the model

whose recommended investment is closest to the truth.

4.3 Out-of-sample predictions and parsimonious models

We now perform out-of-sample predictions to test whether our main classification

reflects stable behavioral tendencies rather than overfitting. Relatedly, we exam-

ine whether more parsimonious models can predict choices similarly well as our

unrestricted, 17-types model.

To answer our first question, we define the training set Mtrain = {M1, . . . ,M7}
and the test set Mtest = {M8, . . . ,M14}, as preregistered. We estimate the model

on the training set and then compute the Euclidean distance between the pre-

dicted and observed joint choice distributions across all menus in the test set.

Importantly, each model appears only in either the training or the test set, so out-

of-sample predictive power reflects general choice procedures rather than simple

repetition of choices for identical models. The training set allows identification of

all 17 types, while the test set identifies a 16-dimensional subset.We pool the Low

and High Stakes conditions.

We find that the distance between the predicted and empirical distributions

on the test set is 0.092. For comparison, the distance between the uniform and

empirical distributions is 0.844. Thus, the full model reduces this distance to about

one-tenth (0.108). This strong out-of-sample predictive performance indicates that

the model captures stable behavioral tendencies.

To address the second question of whether a more parsimonious model can

match the full model’s predictive power, we evaluate all possible subsets of the 17

types. We repeat the out-of-sample prediction procedure for each subset. Because

random variation in the test set could inflate the apparent performance of specific

type combinations, overfitting is a concern. To mitigate it, we apply a bootstrap

approach. Instead of using the original sample, we run the procedure on each of

100 bootstrap resamples of subjects. For each k ∈ 1, . . . , 17 and each bootstrap

sample b, we identify the subset Sb
k among all k-element subsets that yields the

35



Figure 6: Out-of-sample predictive power as function of the number of types

Type added

   All Correlations

   Direct Links

   Minimize Investment

   Low promise

   Conditional Correlations

   Uncond. Correlations and Worst-Case Promise

   Best-Case Promise

   Direct Links and Best-Case Promise

   All types

 
.08 .1 .12 .14 .16

Distance between predicted and actual
choice distribution in test set

Notes: This chart plots the Euclidian distance between the predicted and observed marginal
distributions of choices on the test set, normalized by the distance between the uniform and
observed distributions. The solid line averages only across bootstrap samples in which the listed
typeset predicts best, that is samples b with Sb

k = Sk. The dashed line averages the normalized
distance across all bootstrap draws, including those for which the most predictive type set differs
from Sk.

highest predictive accuracy for that bootstrap sample. We then aggregate across

bootstrap samples by selecting the k-element subset Sk that performs best in the

largest number of bootstrap draws.

We find that the sets of best-predicting types are nested when we include 8

or fewer types. For each k, the best-predicting k-element set Sk consists of the

best-predicting (k− 1)-element set Sk−1 plus one additional type. Figure 6 shows

the sequence of added types for each k up to 8 and displays the distance between

the predicted and empirical distributions, normalized by the distance between the

uniform and empirical distributions on the test set.

We find that the largest gain in out-of-sample predictive power comes from

including a single type in the type set. As our analysis in section 4.1 already

suggests, this is the type that consistently selects the correct model. It alone

reduces the distance between predicted and actual distributions by more than

85%. The best two-type combination adds the type that exclusively follows the

Direct Links criterion. Utility-Based criteria appear once we include three or more

types. The first additions capture cautious choice, with the Minimize Investment
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criterion in the three-element set and the Worst-Case Promise criterion in the

four-element set. The best three-element set rivals the predictive power of the full

model, and the best four-element set exceeds it. Predictive accuracy continues to

improve up to eight types and then declines.36 This decline is expected, as larger

sets increase the risk of overfitting, which produces more variable and thus weaker

out-of-sample predictions.

We conclude that a three- or four-type model consisting of a fully accurate

type, a type that learns only from correlations corresponding to direct links in the

models, and a type that maximizes worst-case outcomes without consulting the

data captures most of the predictable variation in the data.

4.4 Utility-Focused Part

We now examine how individuals choose absent access to the information required

to apply Fact-Based criteria. This analysis provides insight into the Best-Case

Promise criterion and thus speaks to the Narrative Competition literature.

Figure 7: Utility-based choices

A. Spread condition B. Dominance condition
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Notes: Light bars represent the Low Stakes condition, dark bars the High Stakes condition.
Whiskers represent 95% confidence intervals with standard errors clustered by subject.

36Optimal model complexity depends on sample size, see, for instance, Montiel Olea et al.
(2022).
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Figure 7 summarizes subjects’ choices in the Utility-Focused Part. Panel A

shows how often subjects choose the Best-Case Promise alternative in the Spread

condition (light and dark bars indicate the Low and High Stakes conditions, re-

spectively). When information is presented in the format natural to models fit to

data—the State-Constant presentation—about one third of subjects choose the

Best-Case Promise alternative, providing some empirical support for the Narra-

tive Competition literature.37 However, Best-Case Promise choices fall below ten

percent when payoffs are presented in the format typical of experiments on choice

under uncertainty—the Action-Constant presentation.

Which presentation reflects subjects’ actual preferences? Panel B addresses

this question by showing the frequency of choosing the dominant alternative in

the Dominance condition. Subjects almost always choose the dominant option in

the Action-Constant presentation, but about one quarter fail to do so in the State-

Constant presentation. Hence, choices consistent with the Best-Case Promise

criterion in the Spread condition largely reflect mistakes.

While the presentation mode greatly affects choices, a change from the Model

Frame to the Gamble frame has no discernible effect.38 A threefold increase in

stakes causes a minor decrease in Best-Case Promise choices. Assuming higher

stakes increase effort and reduce confusion, this finding supports our interpretation

that Best-Case Promise choices do not reflect preferences.

We conclude that the key assumption of the Narrative Competition literature

describes a sizable minority of subjects when model implications are presented

in the way natural to the setting, but these choices reflect a cognitive limitation

rather than preferences.

37This share is sizable relative to findings in the literature on cautious choice and in the
separate literature reviewed by Engelmann et al. (forthcoming), which rarely observes behavior
consistent with anticipatory utility in laboratory settings.

38Appendix D.5 shows that all comparisons across presentation modes are highly statisti-
cally significant, that all comparisons across the Model and Gamble frames are insignificant
at the 5% level, and that stake-effects are significant in some conditions. It also complements
these aggregate statistics with individual-level analysis to show that the aggregates do not mask
individual-level heterogeneity.
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Table 4: Effects of subjects’ background

(1) (2) (3) (4) (5)

Part 1 Part 2

Dependent variable Chooses correct Chooses Chooses
model maxmax dominated

Treatment Spread Dominance
Presentation mode
State constant ✓ ✓ ✓
Action constant ✓ ✓

Preference measures (OR-IV)
Risk aversion perc. rank (0 to 1) -0.153** 0.004 -0.230*** 0.176 -0.072*

(0.057) (0.106) (0.061) (0.098) (0.034)
Ambiguity aversion perc. rank (0 to 1) 0.078 -0.110 -0.118* -0.034 -0.003

(0.045) (0.087) (0.052) (0.081) (0.024)
Demographics
Female 0.030 -0.008 0.011 0.022 -0.006

(0.021) (0.040) (0.022) (0.037) (0.013)
Political position (0 to 1)
Linear 0.050 0.124 -0.156 -0.040 -0.117

(0.120) (0.220) (0.142) (0.219) (0.078)
Squared -0.001 -0.001 0.003 0.002 0.002

(0.002) (0.003) (0.002) (0.003) (0.001)
Educational background
Knowledge index (0 to 1) 0.130*** -0.139 -0.009 -0.100 -0.026

(0.037) (0.071) (0.045) (0.067) (0.024)
Field: STEM 0.066* 0.015 -0.029 0.009 -0.021

(0.026) (0.048) (0.025) (0.045) (0.017)
Field: Econ. or business 0.057 -0.058 -0.035 -0.018 -0.018

(0.037) (0.061) (0.031) (0.061) (0.020)
Psychological measures
CRT score (0 to 1) 0.267*** -0.444*** -0.067 -0.304*** -0.082*

(0.045) (0.082) (0.048) (0.084) (0.039)
Pseudoscience score (0 to 1) -0.049 0.244* -0.058 0.240* -0.018

(0.056) (0.108) (0.061) (0.103) (0.029)
High stakes 0.004 -0.082* -0.029 -0.011 -0.026*

(0.018) (0.036) (0.021) (0.033) (0.012)
Observations 11228 3208 3208 3208 3208

Subjects 401 401 401 401 401

Notes: Column 1 includes three design control dummies (for whether the correct model is
associated with the high promise, with the minimal action, and the interaction of the two).
Column 1 uses 14 choices for each subject (training and test set); Columns 2 to 5 use 4 choices
each. The ORIV-stacked regression doubles these numbers. All regressions exclude 10 subjects
who identify as neither male nor female. Knowledge index is the fraction of the following
questions a subject can answer correctly: 1. Name of P (A|B), 2. Complete “Correlation does
not...” 3. Spell out ‘DAG’. Omitted category for gender is male. The omitted category for field
of study is ‘other.’ Political position is the position of the preferred political party according to
Jolly et al. (2022), with higher values indicating a more right-wing orientation. Pseudoscience
score (Torres et al., 2020) is higher the more an individual believes in pseudoscience. Standard
errors in parenthesis, clustered by subject. * p < 0.1, ** p < 0.05, *** p < 0.01.
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4.5 Individual characteristics

Finally, we examine the effects of subjects’ background characteristics. Column 1

of Table 4 reports how these characteristics relate to the probability of choosing

the correct model for a given menu in set M. We use OR-IV regression (Gillen

et al., 2019) to correct for measurement error in risk and ambiguity preferences,

each elicited twice. The specification includes controls for whether the correct

model makes the higher or lower promise, whether it recommends the higher or

lower investment, and the interaction between these variables. Because stakes

have limited effects, we pool across stakes conditions and include an indicator for

the High Stakes condition.39

Reassuringly, we find that greater background knowledge of statistics and

causal inference positively predicts choice of the correct model (p < 0.01 in both

cases), as does studying a STEM field (p < 0.05), and, although insignificantly

so, studying economics or business. The effects are sizeable compared to the

random choice benchmark of 50%. Other variables have no explanatory power.

In particular, and contrary to common expectations, we do not find an effect of

political position or political extremity, measured by the square term.This result

appears less surprising when considering that both sides of the political spectrum

tend to doubt their political opponents’ capacity to make rational inferences from

observations (cf. näıve realism; Griffin and Ross, 1991).

Ex ante, the effects of risk and ambiguity preferences in our setting are am-

biguous because of countervailing forces. The risk of selecting an incorrect model

can be reduced by investing more effort in checking data charts, yet that effort

is itself risky if it is uncertain whether a correct model will be found.40 Empiri-

cally, we find that more risk-averse individuals identify the correct model less often

(p < 0.01), while ambiguity aversion has no statistically significant effect.

39We preregistered complementing this analysis with a multinomial logit-type extension of
our main estimates, assuming that the three most common types would receive substantial
probability weight. However, the results in Sections 4.1 and 4.3 show a predominant influence
of the All Correlations criterion and scattered use of other criteria. The low incidence of types
other than those using the All Correlations criterion makes the multinomial logit specification
unsuitable.

40Risk and ambiguity aversion have no statistically significant effects on time spent per round.
The most ambiguity-averse subjects view 1.25 more data charts than the least ambiguity-averse
subjects (p < 0.05), but risk aversion has no such effect.
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Similar regressions for the Utility-Focused Part show that subjects with higher

CRT scores (p < 0.05) and those in the High Stakes condition (p < 0.1) choose the

Best-Case Promise alternative significantly less often, while subjects with stronger

beliefs in pseudoscience choose it more often (p < 0.1). These results align with

our interpretation that Best-Case Promise choices in the Spread condition under

the State-Constant presentation are unlikely to reflect preferences (column 2).

Column 3 supports the interpretation that choices under the Action-Constant

presentation do reflect preferences: correlations with cognitive ability measures

disappear, while correlations with risk and ambiguity preferences emerge. Results

from the Dominance condition (columns 4 and 5) are likewise consistent with

this interpretation, indicating that choices in the Action-Constant but not in the

State-Constant presentation reflect genuine preferences.

5 Conclusion

In this paper, we have experimentally studied how subjects learn and choose in de-

cision problems for which they lack structural information, such as which variables

are related and in what way.

We document two main results. First, subjects display a remarkable ability to

discard misspecified models based on qualitative inference obtained by comparing

models’ correlational implications to the data. Second, when unable or unwilling

to choose based on facts, subjects opt for cautious alternatives rather than for the

Best-Case Promise alternatives assumed in the Narrative Competition literature.

To the extent Best-Case Promise choices occur, they largely reflect a failure of

contingent reasoning. That failure is induced by the natural way of presenting

the implications of models fitted to data, and hence might also occur outside our

laboratory setting. Our results are robust to a threefold increase in the magnitudes

of the monetary stakes.

Future research should extend our work in several directions. First, since we

focused on settings where subjects can distinguish models only through observa-

tional data, we did not include Markov-equivalent models. Future work could

examine choices between models that differ only in their interventional, but not

observational, implications. Second, empirical settings in which individuals learn
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from small samples merit attention, as uncertainty about the data becomes rele-

vant. This is particularly pertinent to the literature on Model Persuasion that is

driven by the mechanics of overfitting to small samples.
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A Theory

A.1 Characteristic correlational implications of selected

DAGs

Using the notation and language of Pearl (2009), the formal statement of Obser-

vation 1 in the case of an arbitrary number of nodes can be stated as follows. This

observation follows directly from Theorem 5.2.1 in Pearl (2009).

Observation 2. Consider a DAG G = (N,E), with I, J,K ∈ N and Z ⊂ N .

(i) If I → J , then generically cov(I, J) ̸= 0.

(ii) (a) If Z = ∅ does not d-separate I and J , then generically cov(I, J) ̸= 0.

(b) If Z = ∅ d-separates I and J , then cov(I, J) = 0.

(iii) (a) If Z = {K} d-separates I and J , then cov(I, J |K) = 0.

(b) If Z = {K} does not d-separate I and J , then generically cov(I, J |K) ̸=
0.

A.2 Tools to construct menus that identify criteria distri-

butions

Here, we first construct the action-equivalence classes such that given any DGP,

any two DAGs within the same equivalence class recommend the same investment

(Subsection A.2.1). Second, we show that for any pair of models we can vary

independently whether the model recommending the higher investment also makes

the higher or lower promise by adjusting the distribution of investments in the

simulated empirical data used for model fitting (Subsection A.2.2). Third, we show

that in menus of two linear models, the Worst-Case Promise criterion is equivalent

to selecting the model that promises the lower payoff if correct (Subsection A.2.3).

Throughout we use the notation A =
√
I (recall that our systems are linear in the

square root of I), X = C1, and Z = C2.

Throughout, we will use the following definition.

Definition 4. Consider a DAG G = (N,E).
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(i) For I ∈ N , G(I) = {J ∈ N | (J, I) ∈ E} is the set of Parents of node I.

(ii) For I, J,K ∈ N we call the triple (I, J,K) a v-collider if I, J ∈ G(K), but

I ̸∈ G(J), and J ̸∈ G(I).

Furthermore, we let VG(a) = EG[Y | A = a]− c
2
a2 denote the expected payoff

according to G when action a is implemented.

Throughout, we will make use of the following observation.

Observation 3. If a linear system of equations with DAG representation G and

G(A) = ∅ is fitted to the data using ordinary least squares, the mean of Y condi-

tional on A is given by

EG[Y |A] = α̂G + α̂G
AA.

When G is consistent with the DGP we let α∗, and α∗
A denote the intercept

and slope coefficients. The optimal action recommendation associated with DAG

G is the solution to the maximization problem aG = argmaxa α̂
G + α̂G

Aa − c
2
a2.

Hence, DAG G recommends the action aG = α̂G

c
.

A.2.1 Action equivalence classes

We now define the 15 action-equivalence classes. We characterize the set of DAGs

in each equivalence class and report the estimated effect of the action on the bonus

for the DAGs in that class. Note that this partition is different from Markov

equivalence classes. We make use of the well-known results that for any two

variables I and J , the estimated slope coefficient of the regression of J on I is

given by cov(J,I)
var(I)

, and that in a regression of a variable J on variables I and K the

slope coefficient on I is given by cov(I,J)var(K)−cov(I,K) cov(K,J)
var(I)var(K)−cov(I,K)2

. Throughout, variance

and covariance operators refer to the DGP.

Class 1 consists of all DAGs that posit no direct or indirect effect of A on Y .

Hence, regardless of the DGP, α̂G = 0 for all G in this class.

Class 2 consists of all DAGs with A ∈ G(Y ), and there is no I ∈ N such

that (A, I, Y ) is a v-collider. That is, A has a direct influence on Y , and no other

variable has a direct influence on Y . While some of the system of linear regressions
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represented by a DAG in this class might calculate the total effect of A on Y as

the sum of the direct effect of A on Y and the indirect effect of A on Y through

one or more of the covariates, the total predicted effect of A on Y is the same.

This follows directly from Proposition 2 in Spiegler (2020). For any DAG G in

this class,

α̂G =
cov(A, Y )

var(A)
.

Class 3 consists of all DAGs with G(X) = {A} and G(Y ) = {X}. That is, A
does not have an indirect influence on Y , but a direct influence on Y through X,

and Z does not (directly or indirectly) influence Y . For any DAG G in this class,

α̂G =
cov(A,X)

var(A)

cov(X, Y )

var(X)
.

Class 4 consists of all DAGs with G(Z) = {A} and G(Y ) = {Z}. This class

parallels Class 3 with the positions of X and Z switched. For any DAG G in this

class,

α̂G =
cov(A,Z)

var(A)

cov(Z, Y )

var(Z)
.

Class 5 consists of the single DAG G : A→ X → Z → Y . We have

α̂G =
cov(A,X)

var(A)

cov(X,Z)

var(X)

cov(Z, Y )

var(Z)
.

Class 6 consists of the single DAG G : A → Z → X → Y . It parallels Class

5 with the positions of X and Z switched. We have

α̂G =
cov(A,Z)

var(A)

cov(Z,X)

var(Z)

cov(X, Y )

var(X)
.

Class 7 consists of all DAGs that contain the v-collider (A,X, Y ) and no other

v-colliders. For any DAG G in this class,

α̂G =
cov(A, Y )var(X)− cov(A,X) cov(X, Y )

var(A)var(X)− cov(A,X)2
.
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Class 8 consists of all DAGs that contain the v-collider (A,Z, Y ) and no other

v-colliders. It parallels Class 7 with the positions of X and Z switched. For any

DAG G in this class,

α̂G =
cov(A, Y )var(Z)− cov(A,Z) cov(Z, Y )

var(A)var(Z)− cov(A,Z)2
.

Class 9 consists of all DAGs for whichG(Y ) = {A,X,Z} andA ̸∈ G(X), G(Z).
For any DAG G in this class,

α̂
G

=
cov(AY )(var(X)var(Z) − cov(X,Z)2)

var(A)var(X)var(Z) + 2 cov(A,X) cov(A,Z) cov(X,Z) − cov(X,Z)2var(A) − cov(A,X)2var(Z) − cov(A,Z)2var(X)

−
cov(A,X)(cov(X, Y )var(Z) − cov(X,Z) cov(Z, Y )) + cov(A,Z)(cov(Z, Y )var(X) − cov(X,Z) cov(X,Y ))

var(A)var(X)var(Z) + 2 cov(A,X) cov(A,Z) cov(X,Z) − cov(X,Z)2var(A) − cov(A,X)2var(Z) − cov(A,Z)2var(X)
,

which is the slope coefficient on A in the regression of Y on the three regressors

A,X,Z.

Class 10 consists of the single DAG G : A→ X → Y ← Z. We have

α̂G =
cov(A,X)

var(A)

cov(X, Y )var(Z)− cov(X,Z) cov(Z, Y )

var(X)var(Z)− cov(X,Z)2
.

Class 11 consists of the single DAG G : A→ Z → Y ← X. It parallels Class

10 with the positions of X and Z switched. We have

α̂G =
cov(A,Z)

var(A)

cov(Z, Y )var(X)− cov(X,Z) cov(X, Y )

var(X)var(Z)− cov(X,Z)2
.

Class 12 consists of the single DAG A

X

Z

Y

. We have

α̂G =
cov(A,Z)var(X)− cov(A,Z) cov(X,Z)

var(A)var(Z)− cov(A,Z)2
cov(X, Y )

var(X)
.

Class 13 consists of the single DAG A

X

Z

Y

. We have

α̂G =
cov(A,X)var(Z)− cov(A,X) cov(X,Z)

var(A)var(X)− cov(A,X)2
cov(Z, Y )

var(Z)
.

4



Class 14 consists of the single DAG A

X

Z

Y

. We have

α̂G =
cov(A,Z)var(X)− cov(A,Z) cov(X,Z)

var(A)var(Z)− cov(A,Z)2
cov(X,Y )var(Z)− cov(X,Z) cov(Z, Y )

var(X)var(Z)− cov(X,Z)2
.

Class 15 consists of the single DAG A

X

Z

Y

. We have

α̂G =
cov(A,X)var(Z)− cov(A,X) cov(X,Z)

var(A)var(X)− cov(A,X)2
cov(Z, Y )var(X)− cov(X,Z) cov(X,Y )

var(X)var(Z)− cov(X,Z)2
.

This is a comprehensive list of all DAGs we consider for the experiment. We ex-

clude the DAG A

X

Z

Y

because one of its characteristic independence relationships,

A ⊥⊥ Y |(X,Z), involves conditioning on two variables simultaneously, which is

not information that we provide to subjects.

A.2.2 Pairwise comparison of promises

We next demonstrate how to select the mean of the action in the DGP to change

which of two given models yields the higher promise. To do so, we will make use

of lemma 1. An immediate implication of this lemma is that if the action is set

to its mean in the data, then any model predicts the same mean outcome. This

observation will prove useful to compare the predicted payoffs of the recommended

actions across models.

Lemma 1. Consider a system of linear equations represented by the DAG G =

(N,E), where G(A) = ∅. For every DGP and I ∈ N , we have

E[EG[I | A]] = E[I].

Proof. We prove this statement by induction. To anchor the induction, consider

any variable I ∈ N for which G(I) = ∅. If I = A, this holds trivially. If I ̸= A,

then EG[I | A] = E[I], since G treats I and A as exogenous variables, and therefore

as independent. Hence, E[EG[I | A]] = E[I].

Next, consider any node J and suppose that the induction hypothesis E[EG[I |
A]] = E[I] holds for every I ∈ G(J). Let β̂IJ denote the slope coefficient on

variable I in the OLS regression of J on all its parents. Then, the constant term
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in that regression, β̂J is given by

β̂J = E[J ]−
∑

I∈G(J)

β̂IJE[I]. (1)

Furthermore, applying the conditional expectation operator EG[·|A] to the regres-

sion equation that defines J according to G yields

EG[J | A] = β̂J +
∑

I∈G(J)

β̂IJEG[I | A]. (2)

Substituting 1 into equation 2, and taking the expectation over the action, we

obtain:

E[EG[J | A]] = E[J ] +
∑

I∈G(J)

β̂IJ(E[EG[I | A]]− E[I])

By the induction hypothesis, the term in parentheses is zero. Hence, E[EG[J |
A]] = E[J ] as was to be shown.

We can now state the key result, Proposition 1, that the model with the lower

action recommendation make the higher promise if and only if the mean action

exceeds some threshold.

Proposition 1. Consider two models, G and G′, where G(A) = G′(A) = ∅.
Let aG and aG′ denote the corresponding action recommendations, and suppose

aG > (<)aG′. Then VG(a
G) ≥ VG′(aG

′
) if and only if E[A] ≤ (≥)aG+aG

′

2
.

Proof. First, recall that for every DAG, G, we can write the predicted conditional

mean of the bonus as a linear function of the action, a, specifically, EG[Y | A =

a] = α̂G + α̂G
Aa. By Lemma 1, we thus have

E[Y ] = E[EG[Y | A]] = α̂G + α̂G
AE[A]

E[Y ] = E[E[Y | A]] = α∗ + α∗
AE[A].

Combining the two equations and solving for α̂G yields:

α̂G = α∗ + (α∗
A − α̂G

A)E[A]. (3)
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We use (3) to express the model’s promise as a function of E[A]:

VG(a
G) = α̂G + α̂G

Aa
G − c

2

(
aG

)2
= α∗ + (α∗

A − α̂G
A)E[A] + α̂G

Aa
G − c

2

(
aG

)2
= α∗ + (α∗

A − c · aG)E[A] + c

2

(
aG

)2
,

where the third equality uses aG =
α̂G
A

c
. We use this expression to write the

difference between the promises associated with models G and G′, respectively, as

follows:

VG(a
G)− VG′(aG

′
) = c · (aG′ − aG)E[A] +

c

2

((
aG

)2 − (
aG

′
)2
)

= c · (aG − aG
′
)

(
aG + aG

′

2
− E[A]

)
.

This concludes the proof.

A.2.3 The Worst-Case Promise criterion

Here we show that in menus of two linear models, the Worst-Case Promise criterion

is equivalent to selecting the model that promises the lower payoff if correct.

Proposition 2. Let G be the set of available DAGs, with |G| = 2. Then, DAG

G∗ ∈ G implies the lowest promise if and only if

G∗ ∈ argmax
G′∈G

min
G∈G

VG(a
G′
).

Proof. Consider two DAGs G and G′. The expected payoff predicted by model G

if recommendation aG
′
is implemented is given by:

VG(a
G′
) = α̂G + α̂G

Aa
G′ − c

2

(
aG

′
)2

= α∗ + (α∗
A − α̂G

A)E[A] + α̂G
Aa

G′ − c

2

(
aG

′
)2

= α∗ + (α∗ − c · aG)E[A] + c · aGaG′ − c

2

(
aG

′
)2

,

where the second equality follows from the steps used in the proof of Lemma 1,

and the third equality follows from aG =
α̂G
A

c
.
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The expected payoff according to G when action recommendation aG
′
is im-

plemented is higher than the expected payoff according G′ when the action rec-

ommendation aG is implemented if and only if

VG(a
G′
)− VG′(aG) = c · (aG′ − aGA)E[A] +

c

2

((
aG

)2 − (
aG

′
)2
)
≥ 0,

or equivalently,

c · (aG − aG
′
)

(
aG + aG

′

2
− E[A]

)
≥ 0.

By Lemma 1, VG(a
G) > VG′(aG

′
) if and only if c·(aG−aG′

)
(

aG+aG
′

2
− E[A]

)
> 0.

Which in turn is equivalent to VG(a
G′
) > VG′(aG). Furthermore, by defini-

tion of aG
′
, and aG

′ ̸= aG, we have VG′(aG
′
) ≥ VG′(aG). Hence, VG′(aG) ≤

min{VG(a
G′
), VG′(aG

′
)}, this completes the proof.
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B Identification and estimation

B.1 Distance between types

Figure B.1 shows the distance between any pair of types on the choice sets of

Experiment 1. We measure the distance between types t and t′ as d(t, t′) =

(M (0)It) (M (0)It′)
′ where M(0), as defined in section B.2, is the matrix of the-

oretically predicted moments when the probability of noisy choices equals q = 0

and It and It′ are column vectors that have entries one in positions t and t′,

respectively, and zero everywhere else.

Figure B.1: Distances between types

U · 0.21

C · 0.32 0.41

* · 0.60 0.39 0.50

· P 0.54 0.63 0.52 0.72

u P 0.46 0.51 0.56 0.52 0.20

U P 0.52 0.35 0.62 0.28 0.44 0.24

C P 0.60 0.67 0.40 0.52 0.20 0.40 0.64

· p 0.50 0.61 0.60 0.88 0.64 0.76 0.84 0.76

u p 0.42 0.49 0.64 0.72 0.72 0.76 0.76 0.76 0.16

U p 0.46 0.33 0.70 0.52 0.76 0.72 0.64 0.72 0.36 0.20

C p 0.60 0.67 0.40 0.52 0.76 0.72 0.64 0.72 0.36 0.52 0.72

· I 0.46 0.33 0.70 0.52 0.52 0.40 0.24 0.72 0.60 0.52 0.40 0.72

· i 0.54 0.75 0.50 1.00 0.44 0.64 0.88 0.48 0.28 0.44 0.64 0.48 0.72

u i 0.42 0.63 0.52 0.72 0.56 0.52 0.76 0.52 0.40 0.32 0.52 0.52 0.76 0.28

U i 0.52 0.35 0.62 0.28 0.76 0.64 0.48 0.64 0.60 0.44 0.24 0.64 0.64 0.72 0.44

C i 0.58 0.79 0.38 0.88 0.40 0.60 0.84 0.36 0.40 0.56 0.76 0.36 0.76 0.12 0.40 0.84

· · · · P P P P p p p p I i i i

u U C * · u U C · u U C · · u U

Notes: The number in each cell and the cell’s color indicate the distance between the two types
defining that cell. Distances normalized from 0 to 1. Each type is listed as a pair of criteria (Fact-
Based, Utility-Based). In each class, a period (·) stands for ‘none.’ The remaining criteria are
encoded as follows. Data-based : u: Direct Links, U : Unconditional correlations, C: Conditional
correlations. ∗: All correlations. Utility-based : P : Best-Case Promise, p: Worst-Case Promise,
A: Maximize Investment, a: Minimize Investment.

B.2 GMM estimation

Let n denote the number of types, and let t = (t1, . . . , tn) denote an element of

the n-simplex ∆n that represents the distribution over the types. Each type i is
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associated with a matrix T i with elements T i
c,m that indicates the probability with

which type i chooses option c from menu m. Hence, if i makes a unique choice on

menu m, then T i
c,m = 1 if c is the chosen option and 0 otherwise. If i randomizes,

then T i
c,m = 1/2.

We use the generalized method of moments to obtain an estimate t̂ of the

type vector and an estimate q̂ of the noise probability. To state the optimiza-

tion problem formally, and to prove identification of our model, note that the

probability that type i chooses option c in menu m when the noise probabil-

ity is q is given by p̃ic,m(q) = (1 − q)T i
c,m + q 1

2
. Similarly, p̃i(c,m),(c′,m′)(q) =

(1 − q)2T i
c,mT

i
c′,m′ + q2 1

4
+ q(1 − q)1

2
(T i

c,m + T i
c′,m′) is the probability that type i

chooses option c from menu m and option c′ from menu m′. Given (t, q), our

model then predicts first moments p̃c,m =
∑n

i=1 tip̃
i
c,m(q), and second moments

p̃(c,m)(c′,m′) =
∑n

i=1 tip̃
i
(c,m),(c′,m′)(q). Note that some of these moments are redun-

dant since (conditional) choice probabilities across all options in a menu must sum

to one. We remove redundant moments.

Let p̃i(q) denote the column vector of type i’s non-redundant first and second

moments. Define M(q) =
(
p̃1(q), . . . , p̃n(q)

)
. Given a type distribution t, the vec-

tor of theoretically predicted moments is M(q) ·t. Let Ẽ denote the corresponding

empirical moments. Our estimator is then defined as

(t̂, q̂) = argmin
t,q

(
M (q)t− Ẽ

)
W

(
M (q)t− Ẽ

)⊺
s.t. t ∈ ∆n, q ∈ [0, 1] (4)

For the weighting matrix W we use the optimal weighting matrix derived from

two-stage feasible GMM.

Regarding identification, note that for a given noise parameter q, the type

frequencies are identified only if M (q)t̄ = M (q)t̄′ implies t̄ = t̄′, that is, if the

nullspace of the linear map M (q) from the type space to the moment space is

empty, a condition that we check for our set of menus M, as well as separately for

the training and test sets Mtrain and Mtest, respectively. To estimate the model

with endogenous q, we start the estimation procedure on a grid of initial values

for q that spans the unit interval and check the local identification condition at

the resulting estimates.

10



C Experiment design details

Table C.1 shows an overview of the structure of the study, which was coded in

Qualtrics and javascript. Here, we list details about each of the stages.

Table C.1: Experiment structure

1. Comprehensive Part

(a) Instructions and two comprehension checks

(b) Preliminary rounds

(c) Main decisions

2. Utility-Focused Part

(a) Instructions

(b) Block-randomized decisions, with comprehension check right before

3. Additional decisions

(a) Ambiguity preference elicitation

(b) Risk preference elicitation

(c) Explanation of own decision-making (free response and multiple choice)

(d) Questions eliciting the understanding of data charts

(e) Cognitive Response Test

(f) Pseudoscience scale

(g) Educational background and demographics

Notes: The experiment proceeds in the order listed. Within each part of section 2, the order of
rounds is randomized at the individual level. The two rounds of risk elicitation are also shown
in individually randomized order.

Instructions and comprehension check We display all instructions on screen.

The entire experiment is in English and was advertised as such. A good command

of English is a curricular requirement for all students in our subject pool.
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Table C.2: Practice Menus

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Menu DGP Competitor Description Criterion identifies Model chosen by

misspecified model

Direct Uncond. Cond. Best-Case Min.

Links corr. corr. Promise Invest.

P1
I

C1

Y

C2

I

C2

Y

C1

Your Action indirectly influ-

ences your Bonus through one

of the Counters. The sec-

ond Counter is a symptom of

both your Action and the first

Counter.

No No Yes DGP Comp.

P2
I

C1

Y

C2 I

C2

Y

C1 Your Action indirectly influ-

ences your Bonus through one

of the counters. The other

counter is not influenced by

anything, but it has an addi-

tional, direct influence on your

Bonus.

Yes Yes Yes Comp. Comp.

Notes: I denotes the investment, referred to as Action in the videos. Column 4 shows the text spoken in

the video. In the screens that correspond to Figure 1, the counters are referred to by color. In the case

of M1, for instance, the text for one of the models is “Your Bonus only depends on the red counter. Your

Action influences that Counter both directly and through the blue counter.’
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We randomize the following display elements: (i) The order in which the list

of charts is displayed. For each individual, we randomly select an order of charts

displaying unconditional relations that we keep constant for the entire experiment.

(ii) Which advisor is on the left of the screen and which is right is randomized in

each round for each individual. (iii) The position of models and recommendations

within the advisor speech bubbles. This is kept constant for a given subject. For

half of the subjects, the models are on top, for the other half the recommendations

are on top. (iv) Whether an advisor’s promise is listed above or below his claim

about how much the subject can expect to earn from following the competing

advisor. A subject either sees all or none of the models presented in the opposite

order, both in the Comprehensive Part and in the Utility-Focused Part. (v) We

randomly redraw the colors of the advisors in each round for each individual to

prevent subjects from forming beliefs such as ‘the red advisor tends to be correct.’

Practice menus All subjects first completed the two practice menus listed in

Table C.2 in random order. Practice menus were not identified as such and could

determine payments. As preregistered, we discard choices from practice menus.

Parameters Table C.3 displays the parameters used in each round. Table C.4

displays the resulting model recommendations, promises, and claims about the

competing models’ recommendation when fit to these DGP, for the High Stakes

condition. In the Low Stakes condition, the corresponding amounts are two thirds

lower.

13



Table C.3: DGP parameters

Round βA βX βY βZ βAX βAY βAZ βXY βXZ βY Z σA σX σY σZ

P1 0.99 0.00 1.50 0.50 3.00 0.00 -1.90 1.00 0.84 0.00 1.00 2.00 2.00 1.00
P2 2.01 0.00 0.99 0.50 1.12 0.00 0.00 2.00 0.00 1.00 1.00 1.00 1.00 1.00
M1 3.46 2.00 5.17 -2.50 -1.70 0.00 2.84 2.10 0.84 0.00 1.00 0.01 6.50 3.70
M2 1.67 4.00 0.74 -3.50 -1.70 0.00 2.84 2.10 0.84 0.00 1.00 0.01 6.50 3.70
M3 1.34 0.50 -1.78 0.50 1.30 0.00 0.00 0.00 1.50 1.72 1.00 0.01 4.40 2.76
M4 1.77 1.00 0.54 -1.20 0.00 3.78 0.00 2.00 2.00 1.40 1.00 1.00 1.00 1.00
M5 3.52 1.00 -7.23 3.00 0.00 3.75 0.00 2.04 2.00 1.40 1.00 1.00 1.00 1.00
M6 1.07 0.05 1.26 0.00 0.00 3.08 -2.00 2.00 0.00 2.39 1.00 0.90 0.03 0.19
M7 2.86 2.00 -7.93 3.00 0.00 3.09 -2.00 2.00 0.00 2.39 1.00 0.90 0.03 0.29
M8 1.59 -1.00 2.93 0.50 1.60 0.00 0.00 -3.15 2.00 2.00 1.00 0.50 1.00 3.00
M9 3.38 -1.00 16.93 -5.50 1.60 0.00 0.00 -3.15 2.00 2.00 1.00 0.50 1.00 3.00
M10 1.60 0.00 -0.52 1.00 3.80 0.00 0.00 0.95 0.00 0.87 1.00 0.90 1.70 4.54
M11 1.08 -0.59 2.86 0.00 0.00 3.09 0.00 2.77 0.00 1.00 1.00 1.00 0.01 1.72
M12 2.77 1.00 -3.93 1.00 0.00 3.00 0.00 3.43 0.00 1.00 1.00 1.00 0.10 2.00
M13 0.25 1.00 0.37 0.50 0.75 0.00 0.00 3.00 0.20 0.39 1.00 0.31 0.75 1.25
M14 1.65 0.50 -0.41 0.50 1.05 0.00 0.00 2.00 0.20 2.00 1.00 1.00 1.00 1.00
W1 0.23 1.00 2.43 1.00 0.00 2.49 3.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00
W2 4.02 -2.72 -0.07 0.00 1.31 0.00 0.00 1.53 2.12 1.53 1.00 0.01 0.43 0.07
W3 1.50 -1.45 0.85 1.00 3.80 0.00 0.00 1.00 0.00 0.40 1.00 1.00 5.20 0.74
W4 2.78 -1.00 1.28 1.00 1.67 0.00 0.00 1.80 0.45 0.00 1.00 1.00 1.00 1.50

Notes: Each model in our setting is a system of linear Gaussian equations. For any variable
i, βi denotes the constant term in the equation corresponding to endogenous variable i, and
σi is the standard deviation of the corresponding error term. For any endogenous variable i
that depends on some other variable j, βij is the slope coefficient on variable j in the equation
corresponding to endogenous variable i.
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Table C.4: Models’ recommendations, promises, and claims about the competi-
tor’s recommendation

Round Model 1 Model 2

Recommendation Promise Claim about Recommendation Promise Claim about
competitor competitor

P1 54.00 72.00 41.89 3.47 48.02 17.92
P2 30.11 48.00 17.89 0.00 72.00 41.90
M1 12.48 72.00 41.87 81.40 48.01 17.88
M2 12.48 48.00 17.87 81.40 72.01 41.88
M3 67.57 72.01 42.01 7.52 48.02 18.02
M4 85.73 72.03 41.95 14.25 48.05 17.97
M5 84.38 48.00 17.99 13.74 71.98 41.96
M6 56.92 72.04 41.98 4.25 48.03 17.98
M7 57.21 48.02 17.90 4.31 72.00 41.89
M8 11.10 48.01 17.87 77.81 72.01 41.88
M9 11.10 72.06 41.92 77.81 48.00 17.87
M10 78.19 72.00 41.89 11.26 48.01 17.90
M11 57.44 72.00 41.99 4.41 48.04 18.03
M12 54.00 47.98 17.89 3.47 72.02 41.93
M13 30.38 76.67 46.29 0.00 56.50 8.94
M14 26.46 48.00 21.54 0.00 72.03 34.42
W1 0.00 48.06 17.92 30.13 72.00 41.87
W2 24.10 72.03 41.85 108.23 48.05 17.87
W3 74.05 72.03 42.02 9.78 48.01 18.01
W4 54.22 48.04 17.89 3.51 72.05 41.90

Notes: This table shows the numbers for the High Stakes condition. In the Low Stakes condi-
tion, all numbers are two thirds lower.
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Risk preference elicitation There are two rounds. In each subjects chose one

of six lotteries each of which offers a 2/3 chance of obtaining a higher amount and

a 1/3 chance of obtaining a lower amount. In the first round, the amounts in Swiss

Francs in the Low Stakes treatment are (15, 15), (16, 14), (20, 10), (24, 6), (28,

2). In the second round, they are (18.75, 18.75), (20, 17.5), (25, 12.5), (30, 7.5),

(35, 2.5). In the High Stakes treatment, all amounts are tripled. We randomize

whether the lotteries are ordered from safe to risky or from risky to safe.

Demographics and other characteristics In addition to the characteristics

listed in Section 3.3, we also elicit the following characteristics: (i) native language,

(ii) country of origin, (iii) age, (iv) degree level the subject is working towards, (v)

monthly spending, (vi) religiosity (vii) eligibility to vote in political elections in

Switzerland, (viii) how much the person agrees with the political party to which

they are closest

In terms of educational background, we elicit the institution and faculty at

which the subject is enrolled in their main field of study. For the purpose of

analysis, we will classify these institutions into STEM, business/economics, and

other.
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D Supplementary Analysis

D.1 Summary statistics

Table D.5 shows summary statistics of our samples. Our sample skews slightly

female and to the political left, as is common for student subject pools. Slightly

under half of our subjects are from German-speaking Europe, and a bit over a

quarter are from Asia.

D.2 Order effects

Panel A of Figure D.2 plots the median response time against the position at which

the subject made the corresponding decision. Subjects take substantially longer on

the first decision, presumably to familiarize themselves with the interface. While

response times decline across the entire experiment, this decline appears to reflect

learning rather than decreased attention, as Panel B shows. For each decision

position, it plots the fraction of subjects who viewed at least one data chart.

Approximately 85% of subjects do so in any given round.

Figure D.2: Order effects

A. Response time B. Data viewing
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Table D.5: Subject characteristics

Male 0.461
Female 0.539
Age 24.5
Place of origin
German-speaking Europe 0.225
Non-German-speaking Europe 0.068
Asia 0.135
Other 0.572

Current degree program
BA 0.192
MA 0.263
PhD and MD/JD 0.029
Not working toward a degree 0.025

Field of study
STEM 0.643
Economics or business 0.118
Other field 0.219

Statistical knowledge
Can name P (A|B) 0.246
Can complete “Correlation does not...” 0.536
Can spell out DAG 0.077
Took class on causal inference 0.225

Psychological measures
CRT score (0–7) 5.072
Pseudoscience score (20–100) 59.560

Religiosity (1–5) 1.696
Closest political party
SVP 0.028
FDP 0.066
BDP 0.031
CVP 0.045
GLP 0.117
SP 0.130
Green 0.058
PdA 0.033

Subjects 414

Notes: Political parties are listed in order of overall stance on the political spectrum, beginning
with most conservative. CVP is the center party.
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D.3 Best-fitting types

Table D.6 lists the estimated frequencies of all types estimated on the union of

training and test set, along with heteroscedasticity-robust standard errors, sepa-

rately for the Low and High Stakes treatments.

Use a width-based resize on the two panels. Notes stay unscaled.

Table D.6: Most common types

A. Low stakes

Criterion Freq. s.e.

Utility-based Fact-based

N
on
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m
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e

L
ow
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m
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ig
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D
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C
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d
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n
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A
ll

◦ • 0.654 (0.049)
◦ • 0.056 (0.026)

• • 0.047 (0.012)
◦ • 0.046 (0.066)

• ◦ 0.038 (0.007)
• ◦ 0.037 (0.009)
• • 0.029 (0.011)

◦ • 0.027 (0.035)
• ◦ 0.025 (0.010)
• • 0.020 (0.009)

• • 0.012 (0.007)
• ◦ 0.009 (0.010)
• • 0.000 (0.017)
• • 0.000 (0.019)

• • 0.000 (0.015)
• • 0.000 (0.008)

• • 0.000 (0.007)

B. High stakes

Criterion Freq. s.e.

Utility Factual

N
on

e

H
ig
h
P
ro
m
is
e

L
ow

P
ro
m
is
e

H
ig
h
A
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io
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D
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C
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n
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A
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◦ • 0.569 (0.048)
• ◦ 0.069 (0.010)

• • 0.057 (0.012)
◦ • 0.047 (0.019)

• ◦ 0.047 (0.010)
• ◦ 0.043 (0.011)

◦ • 0.036 (0.062)
• • 0.034 (0.011)

◦ • 0.032 (0.036)
• ◦ 0.027 (0.008)
• • 0.019 (0.008)

• • 0.012 (0.019)
• • 0.004 (0.007)

• • 0.003 (0.005)
• • 0.000 (0.012)

• • 0.000 (0.007)
• • 0.000 (0.011)

Notes: The symbol • indicates that the corresponding criterion is being used, ◦ indicates that
no criterion from the corresponding class is being applied. The top row contains only a single
symbol because the Conditional Correlations criterion prevents the identification of structure-
and advice-based criteria. Heteroskedasticity-robust standard errors in parentheses.

D.4 Distribution of decision criteria

Figure D.3 shows the distribution of decision criteria estimated only on the training

set, separately for the low and high stakes conditions.
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Figure D.3: Distribution of decision criteria on the training set, split by stakes

A. Fact-based criteria B. Utility-based criteria
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Notes: Whiskers show 95%-confidence intervals, truncated at 0. Panel A: Panel B: Estimates
of advice-based criteria in Experiment 1 are shown conditional on not using the Conditional
Correlations criterion.

D.5 Utility-Focused Part

Table D.7 shows choice frequencies and statistical tests for differences across treat-

ment conditions, pooling over the presentation-order condition.

We complement this aggregate analyis with individual-level analysis to ensure

the aggregates do not mask important individual-level heterogeneity. To do so, we

define the following 12 types. A subject seeks to make either maxmax or maxmin

choices in the Model frame and may have the same or the opposite objective in

the Gamble frame. She might successfully choose according to her preferences

throughout, she might be confused in the state-constant (but not in the action-

constant) presentation mode and select the utility-minimizing option there, or she

might be confused in the action-constant (but not in the state-constant) presenta-

tion mode. For rounds in which one alternative dominates another, both maxmax

and maxmin decision makers prefer that alternative. We assign each subject to

the type whose choices coincide with that subjects’ choices on the largest num-

ber of rounds. In case a subjects’ choices deviate from multiple different types

by the same number of profiles, we calculate type frequencies by assigning equal

probability mass to each these multiple types.

20



Table D.7: Utility-Focused Part: Econometric Tests

(1) (2) (3) (4) (5) (6) (7) (8)

Spread condition Dominance condition Difference between columns
Dependent variable Maxmax choice Dominant choice p-values

Stakes Low High Low High 1-2 3-4 1-3 2-4

Model frame
Levels

State constant
0.357***
(0.030)

0.321***
(0.030)

0.762***
(0.026)

0.716***
(0.029)

0.393 0.236 0.000 0.000

Action constant
0.095***
(0.016)

0.064***
(0.016)

0.962***
(0.011)

0.978***
(0.009)

0.164 0.264 0.000 0.000

Difference
-0.262***
(0.029)

-0.257***
(0.031)

0.200***
(0.028)

0.262***
(0.029)

0.914 0.124 0.000 0.000

Gamble frame
Levels

State constant
0.379***
(0.030)

0.287***
(0.028)

0.724***
(0.028)

0.745***
(0.028)

0.027 0.589 0.000 0.000

Action constant
0.133***
(0.020)

0.081***
(0.017)

0.952***
(0.013)

0.985***
(0.006)

0.047 0.023 0.000 0.000

Difference
-0.224***
(0.032)

-0.240***
(0.031)

0.190***
(0.028)

0.270***
(0.029)

0.711 0.049 0.000 0.000

p-values: Model vs. Gamble
State Constant 0.415 0.191 0.161 0.294
Action Constant 0.074 0.309 0.481 0.469

Subjects 210 204 210 204
Observations 1680 1632 1680 1632

The modal subject, 62.7%, makes maxmin choices throughout and are not

systematically confused by any frame (65.2% and 59.3% of subjects in the low and

high-stakes conditions, respectively). The next biggest group of subjects, 21.2%

make maxmin choices throughout, but are systematically confused by the state-

constant frame where they inadvertently make maxmax choices (20.2% and 22.2$

in the low and high stakes conditions, respectively). Of the remaining subjects,

11.5% are approximately uniformly distributed across the remaining types that do

not make systematic mistakes, and merely 5.1% are assigned to types that make

systematic mistakes but have objectives other than minmin in both frames.
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E Experiment instructions

Due to page restrictions, the complete instructions are available online at https:

//narrativesstudy.s3.us-east-2.amazonaws.com/instructions.pdf
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