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Traditional approach

Much research on belief updating and learning in economics such as balls and urns
experiments (see Benjamin, 2019):

Fix a (very simple) structure of the world. Let people update beliefs from information.
Do they get the magnitudes right?

Here

1. How do people learn the structure of the world? Do they mislearn?

(Structure
learning)

▶ E.g. What affects what? What is a symptom, cause, mediator? Which effects are
direct, which indirect?

2. How do they learn the magnitudes of causal relations in the world when they have
a (possibly wrong) model of the structure of the world?

(Parameter learning)

3. How do people use their (fitted) structural models of the world to explain events?

(Causal reasoning)

Context: Causal Bayes Nets (a.k.a. Directed Acyclic Graphs, DAGs)
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Some Examples
The Causal Bayes Nets approach is suitable in all areas of economics in which
expectation formation matters

▶ Inflation expectations matter for monetary policy; if expectation formation is
misspecified, central bank must respond (Spiegler, 2022). Laypeople’s formation
of inflation expectations systematically differs from that of experts (Andre et al.,
2022)

▶ Traders with misspecified models (fewer variables than truth) shape asset prices.
Generate well-known asset return patterns (Molavi et al., 2024)

▶ Morality and attribution of responsibility (Engl, 2022)

▶ Cycles of populism when people interpret the effect of public policy through
wrong model (Levy et al., 2022). Coexistence of conflicting narratives in the
public sphere (can predict which ones, can predict comparative statics; Eliaz and
Spiegler, 2020).

▶ Mental models shape founders’ perceptions of their firms’ competitive advantage
(Camuffo et al., 2024)



Plan

1. What is a Causal Bayesian Network?

2. Causal reasoning (structure known, parameters known)

3. Parameter learning (structure known, parameters unknown)

4. Structure learning (structure unknown, parameters unknown)

5. Measurement
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Context in the broader literature

Tools come from a large statistical literature

▶ To model causality: “The Book of Why” (Pearl and Mackenzie, 2018), ?

▶ Techniques about estimation etc. (non-causal): Koller and Friedman (2009)

Vast literature in cognitive science uses the tools to explain human cognition. Some
book-length reviews:

▶ “Bayesian models of cognition” (Griffiths et al., 2024)

▶ “Oxford Handbook of Causal Reasoning” (Waldmann, 2017)

There is a more general economics theory literature on misspecified models (reviewed in
Bohren and Hauser, 2024). Has a higher level of abstraction, does not explicitly model
structure. Hence, absent additional assumptions, makes far less specific predictions

▶ Key concept: Berk-Nash equilibrium (Esponda and Pouzo, 2016).
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1. What is a Causal Bayesian Network?
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Exogenous:

X =

{
1 with probability pX

0 with probability 1− pX
Endogenous:

Y =

{
1 with probability pY + pXY X

0 with probability 1−
(
pY + pXY X

)
Z =

{
1 with probability pZ + pYZ Y

0 with probability 1−
(
pZ + pYZ Y

)

X

Y

Z

The above equations specify a complete joint distribution over (X ,Y ,Z ):
for each (x , y , z) ∈ {0, 1}3, it defines P(X = x ,Y = y ,Z = z).
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The key causal information can be represented much more sparsely, intuitively,
and insightfully:

X → Y → Z

This is what we gain from using the DAG formalism!
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The Factorization Formula for the DAG X → Y → Z

The definition of conditional probability P(A | B) = P(A∩B)
P(B) implies the chain rule

P(A ∩ B) = P(A | B)P(B)

In the case of three variables

IF we know that X → Y → Z

▶ X affects Z only through Y . Hence, once we know Y , we cannot predict Z any
better by also using X .

▶ Conditional on Y , Z is independent of X . Formally, P(Z | Y ,X ) = P(Z | Y ).

▶ Hence, we get the factorization formula that describes the DAG

P(X ,Y ,Z ) = P(Z | Y )P(Y | X )P(X )

▶ Which links are absent matters much more than which links are present!
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Causal interventions

Consider X → Y .
E.g. Y = α+ βX + ϵ, with β > 0

Correlation is not causation

▶ Correlation: If Y was higher, X must have been higher

▶ Causation: If we raise Y , we do not change X

Formally, P(X |Y ) ̸= P(X |do(Y ))

do-operator

The do-operator changes the causal model

▶ Disconnect intervention variables from their usual causes (even if endogenous)
and replace them with constants

▶ do(Y ) disconnects Y from X , hence does not affect X

▶ Difference between original and resulting distribution is the causal effect
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Fully specified probabilistic causal models

A. Linear Gaussian B. Linear binary variables
Exogenous:
X = βX + εX

Endogenous:
Y = βY + βXYX + εY

Z = βZ + βYZY + εZ ,

Exogenous:
X = L(1, 0; pX )

Endogenous:
Y = L(1, 0; pY + pXYX )

Z = L(1, 0; pZ + pYZA)

Abstract representations

C. DAG D. Factorization formula

X

Y

Z
P(X ,Y ,Z )

=
P(Z |Y )P(Y |X )P(X )



Level of abstraction at which DAGs operate

A DAG represents

▶ correlational structure

▶ causal structure

A DAG abstracts from

▶ Nature of the random variables (discrete, continuous, etc.)

▶ Whether an effect is positive or negative

▶ Functional forms
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2. Causal reasoning
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Chain: Key correlational implications

C

M

E

(i) cov(C ,E ) > 0 (generically), since cause C indirectly affects effect E

(ii) cov(C ,E |M) = 0, since holding mediator M fixed blocks the effect that cause C
could have on effect E (blocking)

(ii) is an example of
The Causal Markov Condition: Conditional on immediate predecessors, a variable X is
independent of all variables that are not consequences of X
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Evidence speaking to humans’ understanding of the causal Markov condition

2/3 of subjects in Ambuehl and Thysen (2025) intuitively understand blocking without
explanation and connect it to the data to find the correctly specified of two models.

Though see Rehder (2014): “a small but
tenacious tendency to violate the Markov
condition”
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Common cause: Key correlational implications

E

C1 C2

(i) cov(C1,C2) = 0

(ii) cov(C1,C2|E ) ̸= 0 (generically)

Collider Bias
(ii) is called Collider Bias: conditioning on the effect alters the apparent correlation
between the two causes (also see Berkson’s paradox).

▶ Example 1: Two ways to get into Harvard: smart or rich. You learn that a
Harvard student is rich. How smart do you think they are relative to other
Harvard students?

▶ Example 2: E = C1 + C2
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Prior to conditioning: smarts and wealth uncorrelated



After selection: smarts and wealth correlated



Explaining Away

Under additional assumptions on the DGP, collider bias leads to Explaining Away:

Suppose each of two causes can cause an effect. You know the effect happened. Then,
learning that cause 1 occurred decreases the posterior that cause 2 occurred:

P(C2 | E ,C1) < P(C2 | E ).

E.g.

P(smart | Harvard student, rich parents) < P(smart | Harvard student).

▶ Experimental subjects generally adhere to the directional predictions (Rottman
and Hastie, 2014).
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Do people also get the magnitudes right? Harris et al. (2016)
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Fork: Key correlational implications

C

E1 E2

(i) cov(E1,E2) > 0 (generically), since cause C affects both effects E1 and E2

(ii) cov(E1,E2|C ) = 0, since holding common cause C eliminates the sole reason that
created the correlation between C1 and C2

These correlational implications are the same as for the chain (E1 → C → E2).

Two DAGs with identical correlational implications are called Markov-equivalent
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Theorem: “Markov-equivalence = skeleton + v -colliders”
(Verma and Pearl, 1991)

Two DAGs are Markov-equivalent (have the same set of conditional independence
relationships) if and only if they have the same skeleton (i.e. once we drop arrowheads,
the DAGs are identical) and the same set of v-colliders).

Examples

▶ Chain (X → Y → Z ) and common cause (X ← Y → Z )

are Markov-equivalent

.

▶ Common cause (X ← Y → Z ) and common effect (X → Y ← Z )

are not
Markov-equivalent

.
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“Correlation does not imply causation”

▶ True, but correlation carries some information about causation.

▶ Because different causal structures have different correlational implications.



3. Parameter learning

▶ So far: Causal reasoning

“I know what generally affects what and by how much.
What happened in this specific instance?”

(e.g. explaining away)

▶ Now: Parameter learning

“I know what affects what, but not by how much”

Viewing the world through the lens of a causal model
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Parameter learning

When the DAG represents a system of regression equations, then parameter learning is
estimating the system (e.g. with OLS)

Questions

1. When will estimating misspecified DAGs cause errors, and when won’t it? How
bad can misperceptions get?
▶ Mostly not today, see our review paper or Spiegler (2020a)

2. When individuals have the wrong DAG in mind but view the world through it (fit
it to the data), what are economic implications?
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bad can misperceptions get?
▶ Mostly not today, see our review paper or Spiegler (2020a)
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If you are estimating a misspecified model (your model’s DAG ̸= DGP’s DAG),
will the misspecification cause wrong choices (interventions on variables)?

▶ If you want to intervene with any node: You need the correct DAG.

▶ If there’s only a single node you can affect, and some ‘outcome’ nodes: See
Spiegler (2016)

▶ Choice will be correct if the subjective DAG is Markov-equivalent to some DAG in
which the ‘outcome’ nodes form an ancestral clique
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If you are estimating a misspecified model,
will the misspecification cause wrong predictions?

Answer: The misspecification will not matter as long as your DAG is
Markov-equivalent to the true DGP (same correlational implications).

Recall: Verma and Pearl, 1991
Two DAGs are Markov-equivalent if and only if they have the same skeleton and the
same set of v-colliders.

Examples

▶ If you fit a Chain (X → Y → Z ) even though the actual data-generating process
is a Fork (X ← Y → Z ),

you will still make correct predictions.

▶ If you fit a Chain (X → Y → Z ) even though the actual data-generating process
is a Collider (X → Y ← Z ),

you will make wrong predictions.

Literature

▶ Additional, more econ-specific characterizations in Spiegler (2016, 2017, 2020b)

▶ How bad can the predictions from misspecified models get? Eliaz et al. (2020)
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Data-generating process
X = βX + εX

Y = βY + βXY X + εY

Z = βZ + βYZ Y + εZ

X Y Z

Which model (if any) produces correct predictions when fit to the data?

Candidate 1

X = βX + εX

Y = βY + βXY X + βZY Z + εY

Z = βZ + εZ
X

Y

Z

Candidate 2

X = βX + βYX Y + εX

Y = βY + εY

Z = βZ + βYZ Y + εZ
X

Y

Z
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Economic theory literature

▶ What systematic mistakes will an agent make whose choices depend on a
misspecified model? See before.

▶ What if her actions affect the data from which she (mis)learns? Now.

The assumption that economic agents fit misspecified DAGs to data is a powerful,
general tool for modeling ‘behavioral’ distortions

“Graphical causal models are entirely nonparametric, they are
applicable to any static decision problem... the framework thus provides a
“general recipe” for transforming a standard rational expectations model into an
equilibrium model with nonrational expectations.”

Spiegler (2016)
Key example: Dieter’s Dilemma
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Dieter’s Dilemma (Spiegler, 2016)
Setting

▶ You believe: Medication → Blood chemical level → Illness

▶ True DGP: Medication → Blood chemical level ← Illness

▶ Blood chemical is a symptom that is mistaken for a mediator

▶ Assume: (i) Medication masks this symptom (ii) Medication is costly.

▶ Hence, DM with correct model would not take the medication

▶ What will the misspecified DM do?

Analysis

▶ Never take medication → symptom never masked → observe strong correlation between
symptom and illness, intepreted causally → medication seems effective, start taking it

▶ Always take medication → symptom always masked → observe no correlation between
symptom and illness → medication seems ineffective, stop taking it

▶ Interior equilibrium: take the medication sometimes, so that perceived correlation just
strong enough that DM indifferent between taking and not taking it
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Dieter’s Dilemma illustrates personal equilibrium (Spiegler, 2016)

(i) Data (viewed through DAG) justify choices in (ii)
(ii) Choices produce the data in (i)

A X Y

1 0 0
0 1 0
...

...
...

(i) Inference through
lens of DAG

EU(A) = E[ u(A,Y ) | do(A)]

(ii) Choice
max
A

EU(A)

▶ In many (not all) Personal Equilibria, beliefs about actions’ effects are biased.
▶ Personal Equilibrium often necessary for ‘closing’ a model
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Empirics on misspecified DAGs

▶ Largely lacking
▶ Ambuehl, Huang (in progress): Sequential dieters’ dilemma (100 trials)

▶ People form the misspecified DAG
▶ But do not choose in accordance with those believs, possibly because they

misparametrize the DAG
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4. Structure learning

▶ So far: Causal reasoning

“I know what generally affects what and by how much.
What happened in this specific instance?”

(e.g. explaining away)

▶ So far: Parameter learning

“I know what affects what, but not by how much”

Viewing the world through the lens of a causal model

▶ Now: Structure learning

“What can influence what?”
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Two approaches to structure learning

1. “Constraint-based algorithms”: Identify all conditional independence relationships
in the data, find which DAG is consistent with it

▶ Relies on Null-Hypothesis Significance Testing, and thus on arbitrary statistical
significance cutoffs

▶ Computationally intensive with unconstrained space of DAGs (because there are so
many)

2. (Hierarchical) Bayesian structure learning

▶ Maintains uncertainty over DAGs
▶ “Dumb” procedures can approximate it (e.g. Gibbs-sampling on local links, see

Bramley et al., 2017)
▶ Perceptual system appears to do some of it
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Constraint-based learning: Example

Collider

X Y Z

Chain

X Y Z

Data: Suppose we observe the following

▶ Conditional on Y , Z is independent of X . But unconditionally, X and Z are
correlated.

▶ E.g. if variables are approximately normal, then regress Z on X and Y . Conclude
conditional independence if the coefficient on Y is insignificantly different from
zero.

These data are consistent with the chain and inconsistent with the collider. Infer that
the structure is the chain.
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‘Constraint-based’ learning
Subjects are quite well able to derive correlational implications of causal models and, if
inconsistent with data, rule out the corresponding model (Ambuehl and Thysen, 2025)
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No effect of threefold increase in stakes
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Bayesian structure learning: Example
Prior: P(DAG= collider) = P(DAG= chain) = 0.5

Collider

X Y Z

P(X=1) = P(Z=1) = 0.5

P(Y=1 | X ,Z) =

{
0.25 X=0, Z=0

0.75 otherwise

Chain

X Y Z

P(X=1) = 0.5

P(Y=1 | X ) =

{
0.75 X=1

0.25 X=0

P(Z=1 | Y ) =

{
0.75 Y=1

0.25 Y=0

Data Suppose you observed: (X ,Y ,Z ) = (0, 1, 1)
Likelihoods:

P
(
(X ,Y ,Z ) = (0, 1, 1)

)
=

{
0.19 if DAG = chain

0.09 if DAG = collider
Posterior:

P(DAG = chain | data)

=
P
(
(X ,Y ,Z ) = (0, 1, 1) | chain

)
P(DAG = chain)

P(data)

=
0.19× 0.5

0.19× 0.5 + 0.09× 0.5
= 0.69
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Bayesian structure learning in our perceptual system

Where is the speaker?

▶ If Left correct: puppet’s location (seeing) provides information about location of
the speaker (hearing)

▶ If Right correct: puppet’s location (seeing) provides no information about location
of the speaker (hearing)

▶ Empirically: Our perception selects model based on distance between the cues’
perceived locations.
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Two approaches to structure learning

1. “Constraint-based algorithms”: Identify all conditional independence relationships
in the data, find which DAG is consistent with it
▶ Relies on Null-Hypothesis Significance Testing, and thus on arbitrary statistical

significance cutoffs
▶ Computationally intensive with unconstrained space of DAGs (because there are so

many)

2. (Hierarchical) Bayesian structure learning

▶ Maintains uncertainty over DAGs
▶ “Dumb” procedures can approximate it (e.g. Gibbs-sampling on local links, see

Bramley et al., 2017)
▶ Perceptual system appears to do some of it
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6. Measuring and identifying beliefs
about structure



Theory

What beliefs about structure can be identified from what data, in principle?

▶ Halpern and Piermont (2024); Schenone (2018): N variables, preferences over
causal interventions (can choose without restrictions). When are these preferences
consistent with beliefs that follow a single DAG?

▶ Ellis and Thysen (2025): N variables, one is the action, one is the outcome. Can
only observe, not intervene.
▶ What can be identified? DAGs that share the same set of most direct causal paths

▶ These are valuable conceptual first steps, but not ready for practical use to test
whether people hold DAGs as causal models, or to elicit them.

▶ Most of the body of empirical support that people think in terms of DAGs: Test
isolated directional predictions in hypothetical, qualitative environments
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Empirical measurement approaches

▶ Ask people to describe in words, then have RAs map the words into DAGs (Andre
et al., 2024)

▶ Verbal descriptions might be incomplete and ambiguous

▶ If one coder refers to a factor, the other does so with

88% chance

▶ If the coders define the same factors, they have the same DAGs with

84% chance

▶ Overall, they have the same DAGs in

51% of cases

▶ If there’s an indirect effect in their final DAG, this drops to

21%

▶ Hand-draw the DAGs (e.g. Liefgreen and Lagnado, 2023)

▶ What do people mean when they draw an arrow? Same interpretation as the theory?
▶ Do they realize that the key information is not in the arrows they draw but in those

they leave out?

▶ Verbal judgments about counterfactuals from interventions concerning pairs of
variables (Tatlidil et al., 2025)

▶ Large number, grows fast with number of nodes

▶ Elicit conditional probability distributions (interventional and predictive)

▶ Large number, grows fast with number of nodes
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Which elicitation method is best?

▶ We don’t know

▶ The only (extremely limited) formal comparison of methods is Tatlidil et al. (2025)

▶ Some research suggesting that (i) the elicitation format can affect the type of
network that is elicited (Laukkanen and Wang, 2016), (ii) elicitation per se can
affect what subjects think (Liefgreen and Lagnado, 2023)

There are more fundamental things we don’t know

▶ Are mental models acyclical, or do they involve feedback loops, etc.

▶ Do individuals entertain a single mental model (as in the misspecified models
literature) or do they hold multiple models at once (as a Bayesian would)

▶ Do people think in terms of causal networks, or do they piece together
associations between pairs of variables on demand?

▶ Overall: are people’s mental models at all consistent with a single, fixed DAG?
That is, is there even a subjective DAG to meaningfully elicit?
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Summary
Causal DAGs are an extremely powerful tool

▶ Capture fundamental patterns and intuitions regarding causal inference

▶ Applications throughout economics

▶ Vast cogSci literature provides evidence that it describes human cognition

What we did

1. Causal reasoning (structure known, parameters known)
▶ Path blocking / Causal Markov condition
▶ Collider bias / explaining away
▶ Markov equivalence: same skeleton and same v colliders

2. Parameter learning (structure known, parameters unknown)
▶ Fitting misspecified models
▶ Personal equilibrium (Dieter’s Dilemma)

3. Structure learning (structure unknown, parameters unknown)
▶ Constraint-based learning
▶ Bayesian structure learning
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... and there’s so much more...

▶ What do subjects conceive as a node? “The economy” vs. “unemployment, GDP,
and stock market valuations” (ontology)

▶ The predictive/diagnostic reasoning asymmetry

▶ DAGs explain how people categorize and stereotype

▶ Illusory causation (Matute et al., 2015)

▶ The causal frame problem (Icard III and Goodman, 2015)

▶ Alternative causal approaches, e.g. reduction in Kolmogoroff complexity afforded
by a causal explanation (Alexander and Gilboa, 2023)







The predictive/diagnostic reasoning asymmetry

Which is more likely (cf. Tversky and Kahneman, 1980):

A. that a blue-eyed mother’s daughter also has blue eyes

(predictive)

B. that a blue eyed girls’ mother also has blue eyes

(diagnostic)

Mother’s eye color

Father’s eye color

Daughter’s eye color

Eye color distribution stationary → both are equal. Yet, subjects believe (i) more likely.

Further research on the asymmetry (e.g. Fernbach et al., 2011, 2010):

▶ When reasoning from effect to causes, individuals think of alternative causes

▶ When reasoning from cause to effect, individuals forget alternative causes. Hence
overestimate the predictive power of a given cause.
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